
1 October 2000 Delphi Informant Magazine

October 2000, Volume 6, Number 10

Cover Art By: Arthur Dugoni

ON THE COVER
7 On the ’Net
Internet Messaging Made Easy — Kristen Riley
Need to interact with Microsoft Exchange/Outlook? Ms Riley introduces 
the main CDO library with example applications that gather address lists, 
retrieve and send e-mail, and more.

FEATURES
12 Dynamic Delphi
Automating Word: Part II — Ron Gray
Mr Gray completes his two-part series. This month the focus turns to the 
Word components available in Delphi 5, and how to link and embed 
documents using OLE.

17 OP Tech
Database Persistent Objects: Part II — Keith Wood
Last month, he showed us classes that can automatically store their 
published properties in a relational database. This month, Mr Wood 
shares a form wizard for creating them easily.  

21 On Language
A Quick Way to Shortcuts — Bill Todd
Mr Todd examines Windows shortcuts in detail, then shows us how to 
build a custom component you can use to create and modify shortcuts 
in any folder.

26 Columns & Rows
A Practical Guide to ADO Extensions: Part I
 — Alex Fedorov and Natalia Elmanova
Mr Fedorov and Ms Elmanova demonstrate the use of two ADO exten-
sions from Delphi: ADO Extensions for DDL and Security, and the Jet and 
Replication Objects library.

REVIEWS
32 IBObjects 3.4
 Product Review by Robert Leahey

35 Delphi Graphics and Game Programming 
 Exposed! with DirectX
 Book Review by Alan C. Moore, Ph.D.

DEPARTMENTS
2 Symposium by Jerry Coffey
3 Delphi Tools
6 Newsline
36 Best Practices by Clay Shannon
38 File | New by Alan C. Moore, Ph.D.



2

Symposium
Last Man Standing
The mood at the 11th Annual Borland Conference (held this 
July in San Diego) was upbeat. This hasn’t always been the case; 
there were several years where many thought they were attend-
ing the last Borland conference. In particular, the Orlando 
conference in 1994 had the feel of a final fond gathering 
of friends before dissolution. Delphi came out the next year. 
Which reminds me... this year, some of the Delphi R&D team 
were wearing baseball caps with the snappy slogan: “Delphi: 
Saving Borland One Quarter at a Time.” Gotta love that. 

And the Borland community should be jubilant. There’s plenty 
to be happy about: Delphi 6, Kylix, and — lo and behold — 
JBuilder for the Macintosh. I didn’t think I could be excited by 
a Macintosh product, but seeing JBuilder fire up on an iMac 
was a genuine thrill. Perhaps I could create something for my 
son at school... For the first time in a long time, Borland has 
direction, new markets to conquer, and every reason to expect 
success in those markets. 

There was also a novel aspect to this year’s conference: the Kylix 
previews. And, as exciting as it is, I don’t mean Kylix per se. 
Rarely has a product been shown to a conference crowd this 
early in its development cycle. Since the Kylix IDE wasn’t yet 
functional, the speakers were using Emacs as the editor, then 
creating the executables with a command-line compiler. Delphi 
was never shown in public that early.

So what has changed? How can Borland reveal Kylix at such 
an early stage? There’s literally no competition. When Delphi 
was being developed, Borland had to keep it from prying eyes 
at Microsoft, Symantec, and elsewhere. There’s now only one 
competitor left, Microsoft, and they’re not about to create a 
RAD tool for Linux. Now that we live in the Pax Microsofta, 
there’s no need to keep the kimono closed. In retrospect, the 
Bruce Willis vehicle Last Man Standing might have been a better 
choice than The Matrix as the conference motif. 

Perhaps the most exciting event occurred after the conference, 
when I saw the August 2000 issue of Visual Basic Programmer’s 
Journal. VBPJ is the premiere VB magazine, and this month 
it came in a polybag containing a fully-functional, 60-day 
evaluation version of Delphi 5 Enterprise. There’s also a full-
page ad inside pointing readers to www.vbforlinux.com. This 
is the best news to come out of Borland in recent memory. 
And I don’t just mean the polybag coup. What’s important is 
that Borland thinks it can take on Microsoft directly in the 
RAD marketplace. I think they can as well — always have 
— but it’s immensely heartening to see Borland marketing 
Delphi so aggressively. 

Thanks for reading.

Jerry Coffey, Editor-in-Chief
jcoffey@informant.com
 October 2000 Delphi Informant Magazine

www.vbforlinux.com


3 October 2000 Delphi Informant Magazine

Delphi 

T O O L S

New Products 
and Solutions
Woll2Woll Announces 1stClass 2000

  Woll2Woll Software 
announced the availability of 
1stClass 2000, a new upgrade 
to its visual component suite for 
Delphi and C++Builder. 
  1stClass 2000 offers image-
shaped forms and buttons, 
data-aware and non-data-aware 
treeview controls, an Office 97 
Outlook Bar Style container 
control, the Imager control, and 
a statusbar with many built-in 
styles and the ability to size 
panels proportionally. You can 
use edit controls like the font, 
color, tree, and image combos 
that can be embedded directly in 
an InfoPower Grid.
  1stClass 2000 offers several 
new features, including support 
for custom framing and transpar-
ency effects; support for the same 
button and glyph effects that can 
be found in the InfoPower 2000 
VCL; improved image painting 
in 256-color environments when 
using the following controls: 
TfcImageBtn, TfcImager, TfcIm-
ageForm; and C++Builder 5 com-
patibility (Professional version).
Woll2Woll Software
Price: Standard, US$199; Professional, 
US$299.
Phone: (800) 965-2965
Web Site: http://www.woll2woll.com/
1stclass
SkyLine Tools Announces ImageLib Corporate Suite 5.0 for Delphi 5

  SkyLine Tools Imaging 
announced the release of Image-
Lib Corporate Suite 5.0 for 
Delphi 5, the company’s imaging 
solution for Delphi 5 developers. 
  Features of the newest 
version of the ImageLib Cor-
porate Suite include upgraded 
memory for larger images pro-
duced by newer digital cameras; 
upgraded TWAIN scanning 
that meets the specifications for 
newer scanners; a features pack-
age that allows annotations to 
be customized by the developer; 
and a magnifying glass feature, 
which allows the user to zoom 
in to a specific area of the image 
rather than zooming in to the 
entire page, as well as lets the 
user move the magnifying glass 
around on the screen, continu-
ing to magnify only the area 
under the “glass.”
  In addition, this toolkit 
contains all the features from 
previous versions, such as anti-
aliasing, multi-page TIFF files, 
and over 40 image-manipulation 
effects and filters.

SkyLine Tools Imaging
Price: US$599
Phone: (800) 404-3832
Web Site: http://www.imagelib.com
erty. Or make the calendar 
  DBI Technologies Inc. start and end dates, as well prop
DBI Technologies Announces Solutions::PIM Professional 2.0
announced the release of 
Solutions::PIM Professional 2.0, 
designed to allow developers to 
build Microsoft Outlook-style 
appointment-based information 
management applications. Ver-
sion 2.0 allows the presentation 
of appointments by day, week, 
month, year, or developer def-
inition with the new Virtual 
Calendar. It also features a 
scrolling calendar with definable 
as drag-and-drop appointments. 
You can identify appointments 
using colors or pictures, or print 
calendars in multiple views using 
various paper sizes with a single 
line of code.
  This version offers developers 
definable security features at mul-
tiple levels. Manage the addition 
of appointments with advanced 
conflict checking, including a 
new appointment interval-offset 
interactive via the Web. All com-
ponents have been made Internet-
ready, making them compliant 
with Web page scripting. 

DBI Technologies Inc.
Price: US$489 (includes 17 32-bit licensed 
ActiveX components; fully functional sample 
applications with source code; online tutori-
als; and comprehensive online help).
Phone: (800) 670-8045 or (204) 985-5770
Web Site: http://www.dbi-tech.com

http://www.woll2woll.com/1stclass
http://www.imagelib.com
http://www.dbi-tech.com
http://www.woll2woll.com/1stclass


4 October 2000 Delphi Informant Magazine

Delphi 

T O O L S

New Products 
and Solutions
  Tabdee Ltd. announced the to be devel
Tabdee Announces TurboSync 1.0 
release of TurboSync 1.0, a set 
of VCL components and Delphi 
classes that enable Palm conduits 
oped in Delphi. 
  Conduits are DLLs that 
handle the synchronizing of data 
between Palm devices and PCs. 
 

  ProWorks LLC announced the 
TurboSync components allow 
developers to define the Palm 
database structure visually in the 
IDE, and use familiar Delphi 
idioms to access the data — 
so there’s no more struggling 
with VC++ and inheriting from 
poorly documented classes.

Tabdee Ltd.
Price: US$60 (includes full source code for 
the components, translations of the major con-
duit APIs, and free minor version upgrades).
Phone: +44 (0) 118 9882561
Web Site: http://www.tabdee.ltd.uk
  InstallShield Software Corp. wizard; an enhanced dialog editor;

InstallShield Announces InstallShield for Windows 
Installer 1.5
announced InstallShield for 
Windows Installer 1.5, the latest 
version of the company’s com-
prehensive setup solution for 
developers of Windows 2000 
logo-compliant applications.   
  This new version offers Internet-
enabled update patching, which 
allows users of Microsoft’s Win-
dows Installer service to create 
“software patches” of their Win-
dows Installer-based applications 
for distribution over the Internet. 
The .MSI patching capabilities 
allow setup authors to build soft-
ware patches — updates to an 
existing installation or set of instal-
lations — that contain only dif-
ferences between the installations, 
not the complete file set. The 
update is created as the difference 
(file- or byte-level) between two 
releases of the product.
  InstallShield for Windows 
Installer allows developers to 
write and debug custom actions 
using the InstallScript language, 
without leaving the installation 
development environment. 
Developers can also reuse exist-
ing or previous InstallScript to 
take advantage of prior setup 
investment. 
  InstallShield for Windows 
Installer 1.5 delivers a GUI-
driven setup-authoring environ-
ment and an assortment of 
wizards and help features to 
shorten development time and 
decrease the learning curve asso-
ciated with using the Microsoft 
Windows Installer service. 
  Additional features include the 
ability to automatically include 
updated COM information in a 
project at build time; the ability 
to programmatically add/-
remove features, components, 
merge modules, registry entries, 
and shortcuts; dynamic file link-
ing with support for subfolders; 
the ability to call any exportable 
DLL function and define the 
required parameters with a simple 
and additional language support. 

InstallShield Software Corp.
Price: US$995 (sold as part of the 
InstallShield Professional 2000 bundle).
Phone: (800) 374-4353
Web Site: http://www.installshield.com
ProWorks Releases Flipper Graph Control 2.0
release of Flipper Graph Control 
version 2.0, an upgrade to the 
company’s ActiveX charting con-
trol. Version 2.0 features include 
enhanced compatibility with the 
Web, increased flexibility for sci-
entific and financial charts, an 
improved look and feel, and 
greater customizing capability.
  Flipper Graph Control 2.0 
can download saved data across 
the Internet, as well as easily 
integrate into ASP or HTML 
Web pages, enabling users to 
manage and display off-site data. 
Included with version 2.0 is 
a signed .CAB file, permitting 
client machines to download a 
run-time version of the control 
for use on a Web page.
  Flexibility has been added to 
scientific and financial graphs, 
with the addition of new func-
tions for polynomial curve fit-
ting, moving average, and setting 
axis data aspect ratio.
  The look and feel of version 2.0 
has been enhanced with gradient 
fills for 2D bar charts, a variety 
of fill style patterns for all chart 
types, and the ability to place 
symbols from fonts as marks on 
a graph. Context menus with
editing dialog boxes provide an 
effortless user interface at run 
time.
  Other new features include 
ADO Recordset reading, OLE 
drag-and-drop support, tool tips, 
and improved date formatting 
and incrementing.
  Graph types include 2D 
and 3D line, bar, points, areas, 
stacked bars, hi-lo, pie, bubble, 
spider, and true 3D surfaces. 
Multiple graphs can be added to 
the control for drill-down func-
tions or merged to present data 
on more than two y axes. The 
user can find objects and graph 
items with the mouse, causing 
events to be fired to the devel-
oper. Creating graphs continues 
to be fast with auto-scaled axes, 
numerous examples, and a full 
tutorial.

ProWorks LLC
Price: US$349
Phone: (541) 752-9885
Web Site: http://www.proworks.com

http://www.installshield.com
http://www.tabdee.ltd.uk
http://www.proworks.com


5 October 2000 Delphi Informant Magazine

Delphi 

T O O L S

New Products 
and Solutions
Active+ Software Announces ServiceMill 3.1.35 

3.1.35, the system utility that 
  Active+ Software announced 

the release of ServiceMill 
creased level of user 
instantly turns any DOS, Win-
sion, the Lis
dows or OS/2 exe-
cutable, as well as 
batch files, into a 
Windows NT/2000 
service. 
  ServiceMill now 
supports Windows 
2000 Kernel Job 
Objects. When a 
program is started 
as a service, the pro-
gram process will 
be attached to a 
Job object. There-
fore, if the program 
starts other 
nux 

t & Label Designer 
processes, they will all run in 
the same Job. Stopping the ser-
vice will cleanly stop all pro-
cesses in the Job, not only 
the primary process. Another 
advantage of running a service 
program through a Job is that 
all processes running in it will 
be restricted to a predefined 
scheduling priority. 

Active+ Software
Price: US$65 (single-machine license for 
Windows NT Workstation/2000 Professional); 
US$125 (single-machine license for Win-
dows NT Server/2000 Server).
Phone: +33 468054774
Web Site: http://www.activeplus.com
  VMware, Inc. announced the which was designed for Li
VMware Announces VMware Express for Linux
release of its latest desktop prod-
uct, VMware Express for Linux, 
users who want to run Windows 
95/98 to access the Windows 
applications they need.  
  VMware Express for Linux 
allows users to run Windows 
95 or 98 in a VMware virtual 
machine on top of a Linux 
host system. A VMware virtual 
machine works just like a full 
PC, with full networking and 
multimedia support. In addi-
tion, users will easily be able 
to share files between the Linux 
host system and the Windows 
virtual machine, using the 
Samba file-sharing service that 
comes preconfigured.

VMware, Inc.
Price: Call for pricing.
Phone: (650) 475-5000
Web Site: http://www.vmware.com
  combit GmbH announced the offers an in
combit Announces List & Label 7.0
newest version of its report gen-
erator, List & Label 7.0, which 
friendliness and a variety of new 
features. As with the previous ver-
and Internet/e-mail modules can 
be passed on to the end-user roy-
alty free.
  Developers can integrate the 
report generator in existing appli-
cations with a few lines of code. 
Applications are equipped with 
functions for creating reports, lists, 
forms, and labels. Code examples 
in various programing languages 
are available to simplify develop-
ment. The tool is available for all 
DLL-capable programming lan-
guages. Special versions, which 
only work with Delphi or Visual 
Basic, are also available.
  List & Label consists of a print 
engine and a form designer. Data 
is transferred directly from the 
application, so the tool is indepen-
dent of a specific database.
  The Unicode/Multibyte module 
can process most character sets, 
including Asian.
  The DTP form designer offers 
encompassing layout tools and 
many filter and layout options. 
These can be used via drag-
and-drop. The formula assistant 
enables complex calculations and 
string manipulations directly at 
run time. The integration of RTF 
text, graphics, and barcodes is 
also possible, as well as individual 
printer control for the first and fol-
lowing pages.

combit GmbH
Price: Contact combit for pricing information.
Phone: +49 7531 906010
Web Site: http://www.combit.net/

http://www.combit.net/
http://www.vmware.com
http://www.activeplus.com


6 October 2000 Delphi Informant Magazine

News 

L I N E

October 2000

ies for ultra- visual development tools for 
  New York, NY — Inprise/- component librar

Inprise/Borland Introduces Borland CLX 
Borland announced Borland 
CLX (component library for 
cross-platform), the next-gen-
eration component library and 
framework for developing 
native Linux and Windows 
applications and reusable com-
ponents. CLX simplifies graph-
ical user interface, database, 
and Web application devel-
opment with a cross-platform 
component framework design 
based on the Delphi and 
C++Builder visual component 
library (VCL). 
  CLX will be available in 
the forthcoming Linux version 
of the Borland Delphi and 
C++Builder tools, code-named 
“Kylix.” The Kylix project is a 
native rapid application develop-
ment environment for the Linux 
operating system, and will also 
be incorporated into the next 
Windows versions of Delphi and 
C++Builder. 
  Borland CLX offers true 
native Windows and Linux 
high performance and native 
services; an object-oriented 
component framework for 
building reusable components 
in Delphi or C++; simplified 
migrating of Delphi and 
C++Builder applications to 
Linux; integration with the 
next generation of Borland 
Windows and Linux platforms; 
and support for commercial, 
proprietary, and open-source 
licensed development. Borland 
CLX also allows developers to 
leverage existing Delphi and 
Visual Basic skills.
  For more information, visit 
http://www.inprise.com.
Inprise/Borland Announces JBuilder Support for 
Apple’s Mac OS X 

  San Diego, CA — Inprise/-
Borland announced plans to 
provide its JBuilder pure-Java 
development environment for 
Apple’s next-generation operating 
system. JBuilder’s support for 
Apple’s new Aqua graphical user 
interface lets Java developers 
build applications on the Macin-
tosh platform that take advantage 
of the Aqua design elements. 
  Mac OS X will support the Java 
2 Platform, Standard Edition 
(J2SE), including the Java Hot-
Spot Client Virtual Machine, for 
optimal performance. Using the 
JBuilder Java IDE, developers 
will build Java applications run-
ning on Mac OS X and realize 
the benefits of the Aqua look-
and-feel, designed to advance the 
ease-of-use of personal computer 
user interfaces. 
  JBuilder for Mac OS X 
will be available in conjunction 
with Apple’s planned release of 
Mac OS X early next year. To 
learn more, visit Inprise/Borland 
at http://www.borland.com, the 
community site at http://
community.borland.com, or call 
the company at (800) 632-2864. 
Inprise/Borland’s Kylix to Support Apache Application Development

  Scotts Valley, CA — Inprise/-
Borland announced support of 
native database-driven Apache 
Server applications in its forth-
coming Linux developer tool 
set, Kylix. The Kylix project, 
planned to be available later in 
2000, will enable Web applica-
tion development for the Apache 
Web Server on the Linux operat-
ing system, and for the Windows 
platform in an upcoming version 
of Delphi. 
  By supporting Apache Server 
applications, the Kylix project 
will allow developers to build 
native applications in an object-
oriented, component-based devel-
opment environment, with Linux 
OS and Windows OS cross-plat-
form flexibility. In addition to 
supporting the Apache Server, 
the Kylix project will create a 
migration path from other HTTP 
Web servers to the Apache Server 
for applications developed with 
Borland Delphi and C++Builder. 
Web servers supported include 
Microsoft Internet Information 
Server (IIS), Netscape servers 
through Common Gateway Inter-
face (CGI), Internet Server Appli-
cation Program Interface (ISAPI), 
and Netscape Server Application 
Programming Interface (NSAPI). 
  The Kylix project is intended 
to be the first high-performance 
rapid application development 
tool for the Linux platform.

http://www.inprise.com
http://www.borland.com
http://community.borland.com
http://community.borland.com


7 October 2000 Delphi Informant Magazine

On the ’Net
CDO / Microsoft Outlook / Microsoft Exchange / Delphi 4, 5

By Kristen Riley

Figure 1: The Import Type Library
Internet Messaging Made Easy
Getting Started with Collaborative Data Objects
Collaborative Data Objects (CDO) provides a way to include messaging functionality 
in applications. It does this by providing a simplified, but limited, interface to the 

underlying MAPI (Messaging Application Programming Interface) library. Since CDO is a 
COM object that takes the form of a dynamic-link library (DLL), the properties and methods 
of CDO can easily be accessed with Delphi after importing the DLL as a type library.
There are two parts to CDO: the main CDO 
library, and the CDO rendering library. The 
main CDO library provides the ability to send 
and receive mail messages, interact with folders 
and address books, and generate meeting items 
and appointments. The CDO rendering library 
is used to render CDO objects and collections 
into HTML for use on the Web. This article intro-
duces Delphi developers to the main CDO library 
with example applications that retrieve address 
lists, retrieve Inbox e-mail, and send e-mail.

Getting Started with CDO
Microsoft Outlook (97, 98, or 2000) must be 
installed on your machine to use CDO. If 

Outlook 98 or Outlook 2000 
is installed, make sure they 
 dialog box.
were installed with the Cor-
porate or Workgroup Mode 
to ensure that the proper 
underlying MAPI files were 
also installed. A message 
store is also necessary, pref-
erably Microsoft Exchange 
Server.

The latest version of CDO is 
1.21. However, there are dif-
ferent versions for Windows 
95, 98, and NT. If cdo.dll 
isn’t already on your machine, 
copy the correct version of it 
into your \Windows\System32 
directory. The CDO files can 
be downloaded from http://
www.microsoft.com/exchange/
downloads/CDO.htm. Reg-
ister the file with the 
regsvr32.exe cdo.dll command from your 
\Windows\System32 directory.

To use CDO in Delphi applications, first import 
the library. To do this, click Project | Import 

Type Library to open the Import Type Library 
dialog box (see Figure 1). (Note: The library may 
already be installed, so it’s a good idea to check 
the Open Type Library dialog box for its pres-
ence before trying to install it.) Click on the Add 
button to open the Open Type Library dialog 
box. Find where you put your copy of cdo.dll, 
highlight it, and click the Open button. MAPI 

(Version 1.21) should now be highlighted at 
the top of the Import Type Library dialog 
box, with Class names containing TSession. Click 
the Create Unit button. This will create the 
file MAPI_TLB.pas in the Delphi \Imports 
directory, e.g. \Program Files\Borland\Delphi5\
Imports. When requested, recompile the package 
and save it.

Now let’s look at the file we’ve created. Open 
the MAPI_TLB.pas file in Delphi. Search for 
the first occurrence of the string _Session = 
dispinterface;. As stated in the MAPI_TLB file, 
you should be looking at the “forward declarations 
of interfaces defined in the type library.” This is a 
list of the structures used in CDO, and defined fur-
ther down in the file. The structures we’ll use in the 
examples are: _Session, AddressLists, AddressList, 
AddressEntries, Messages, Message, Recipients, 
Recipient, Attachments, and MessageFilter.

Now, search for the second instance of the string 
_Session = dispinterface;. This will go to 
where the Session object is defined. All the struc-
tures of CDO are accessed beginning with the 

http://www.microsoft.com/exchange/downloads/CDO.htm
http://www.microsoft.com/exchange/downloads/CDO.htm


On the ’Net
Session object. Following the session’s structure are the rest of the 
CDO structures and their properties and methods. As you can see, 
the properties and methods of these structures are all accessed with 
variant parameters.

As mentioned, three CDO examples are illustrated in this article: 1) 
Listing our recipient groups (address books) and their corresponding 
recipients; 2) Gaining access to the Inbox and sorting, filtering, and 
listing received e-mails; and 3) Sending e-mail. 

First, let’s describe the variables and code necessary to add a CDO 
session to your application — and then log on using that session — 
since this is common to all three examples.

To use CDO in your application, add MAPI_TLB to your uses 
clause. Then, for the purposes of this article, add a session variable to 
your private declarations:

private
  fSession: _Session;

For these examples, also add the following variable to the private 
declaration:

fConnected: Boolean;

Now you can create and refer to the session in your code. In this case, 
I create the Session object when the form is created:

if fSession = nil then
  fSession := Session(CoSession.Create);

Mailstore Logon
Once your session is created, you can log on, which will connect 
your application to the mailstore. The Logon method is defined as 
follows:

function Logon(Prof ileName: OleVariant;
  Prof ilePassword: OleVariant; ShowDialog: OleVariant;
  NewSession: OleVariant; ParentWindow: OleVariant;
  NoMail: OleVariant; Prof ileInfo: OleVariant):
  OleVariant; dispid 119;

There are two ways to log on to the mailstore. The first uses 
your profile and password; the second uses your server, login, and 
password. I was forced to use the second way because the first 
method didn’t work with a modem connection (at least in our 
system). For these example applications, all three fields can be 
entered, but the second logon method is used only if there is 
text in the server field. Figure 2 shows the code that fills in the 
8 October 2000 Delphi Informant Magazine

if Length(ServerEdit.Text) <= 0 then
  begin
    Prof ileName := MailBoxEdit.Text;
    Prof ileInfo := EmptyParam;
  end
else
  begin
    Prof ileName := '';
    Prof ileInfo :=
      ServerEdit.Text + #10 + MailBoxEdit.Text;
  end;

Prof ilePassword := PasswordEdit.Text;

Figure 2: Assigning values to the variables for the Logon function.
variables for the Logon function call (ProfileName, ProfilePassword, 
and ProfileInfo are declared as strings).

The ProfileName field is an Outlook profile. This is the name you 
use when normally logging on to Outlook. However, if you log in 
using the second method, this field is set to an empty string, and 
the ProfileInfo field is used. The ProfileInfo field will then consist of a 
server and log in name separated by the ASCII linefeed character.

Note that the ProfileInfo field is set to EmptyParam in the first login. 
EmptyParam works as a parameter placeholder in COM. It tells the 
COM object to use the default parameter value since the field isn’t used. 
Because the ProfileInfo field is the last parameter of the Logon function, 
it could be left off the argument list. However, if ProfileInfo was the 
second parameter, EmptyParam would have to be used so that the next 
parameter, ProfilePassword, would be called in the correct place.

The next parameter is the password. If you’re already logged in to 
Outlook, and you’re going to log in under the same profile in your 
application, the password doesn’t seem to be necessary.

The ShowDialog parameter, when set to True, will open the Outlook 
logon dialog box if the profile/server/password information was 
searched and deemed incorrect. If this is set to False and incorrect 
logon information is supplied, a temporary profile will be created. 
However, the temporary profile won’t have an Inbox — a fact you can 
put to use when automating applications. This will be examined later 
when looking at the Inbox example application.

The ParentWindow parameter is set to -1, so that any Logon popup 
dialog boxes aren’t linked to a parent window. The NoMail and 
NewSession variables are set to True.

Now, wrap the Logon call with an exception handler. Even though the 
Logon is supposed to return a value, in my testing, it always returned 
NULL whether or not the login information was valid:

try
  fSession.Logon(Prof ileName, Prof ilePassword, True, True,
                 -1, True, Prof ileInfo);
  fConnected := True;
except
  on E: Exception do 
    ShowMessage('Logon Failed: ' + E.Message);
end;

After calling the Logon function, provided there are no exceptions 
(fConnected will be True) and assuming the logon information 
given was correct (see the Inbox example for more detail), then you 
can start working with the other properties of the Session object. 
For instance, f Session.CurrentUser contains the logged-in user’s 
name, and f Session.Name contains profile account information. 
The following examples will be using the session’s AddressLists, 
Inbox, and Outbox properties.

Recipient Listing Example
Figure 3 shows the hierarchy of the 
structures we’ll use to list stored 
recipients.

First, access the session’s list of 
address lists. This is done using 
the AddressLists property of the 
session. The AddressLists structure 

Session
AddressLists

AddressList
AddressEntries

Recipient

Figure 3: Object hierarchy 
used in first example.



9 October 2000 Delphi Informant Mag

On the ’Net

RecipientListBox.Clear;

I := AddressListBox.ItemIndex;
Inc(I);

MyAddressItem := fSession.AddressLists.Item[I];
AddEntries := MyAddressItem.AddressEntries;

for I := 1 to AddEntries.Count do begin
  MyRecipientItem := AddEntries.Item[I];
  RecipientListBox.Items.Add(MyRecipientItem.Name + ', ' +
                             MyRecipientItem.Address);
end;

Figure 4: Adding recipient information to the RecipientListBox.

Session
Inbox

Messages
MessageFilter

Message
Attachments

Recipients
Recipient

Figure 5: Object hierarchy 
used in second example.

try
  fSession.Logon(Prof ileName, Prof ilePassword, True, True,
                 -1, True, Prof ileInfo);
  fConnected := True;
  try
    InBox := fSession.InBox;
    fValidInbox := True;
  except
    on E: Exception do 
      ShowMessage('Invalid Inbox: ' + E.Message);
  end;
except
  on E: Exception do 
    ShowMessage('Logon Failed: ' + E.Message);
end;

Figure 6: Raising an exception if the Outlook Inbox isn’t present.

can be examined by searching for 
AddressLists = dispinterface 
in the MAPI_TLB file. Each item 
of the AddressLists is an AddressList 
(which is defined after AddressLists 
in the MAPI_TLB file). This exam-
ple iterates through the items of 
AddressLists and uses a temporary 
OleVariant variable, MyAddressItem, 
to hold the AddressList information. 
Then, using the MyAddressItem vari-
able, it adds the name of each 
address list to the AddressListBox:
AddressListBox.Clear;
for I := 1 to fSession.AddressLists.Count do begin
  MyAddressItem := fSession.AddressLists.Item[I];
  AddressListBox.Items.Add(MyAddressItem.Name);
end;

Note that the AddressLists count goes from 1 to n. Because the 
count for this property is relatively static, the placement of the 
AddressList item is used later to obtain additional information on 
the item. The AddressList item will have an AddressEntries property 
(see AddressEntries in the MAPI_TLB file). The items of the 
AddressEntries are the recipients to be listed. The structure of a recipi-
ent can be found by searching for Recipient = dispinterface in 
the MAPI_TLB file. Using the OleVariant variables MyAddressItem, 
AddEntries, and MyRecipientItem, the names and addresses of the 
recipients contained in the selected address list are added to the 
RecipientListBox (see Figure 4).

The value returned by AddressListBox.ItemIndex was incremented 
because the listbox has a 0 index and fSession.AddressLists starts at 1. 
The AddEntries count also begins at 1.

Inbox Access Example
Figure 5 shows the hierarchy of the structures we’ll use to list received 
e-mail messages. In this example, the Inbox folder will be accessed 
after logging on to the mailstore. 

In this case, however, there’s a gotcha. Say you’re running an 
automated application in which you want the Logon dialog box 
popping up on an invalid logon. If you pass the Logon function 
invalid information, an exception won’t be raised and a flag doesn’t 
signal this incorrect logon. Instead, a temporary profile will be 
assigned. As mentioned previously, this temporary profile won’t 
have an Inbox. This means that as soon as you try to access the 
Inbox, an exception will be raised. You can trap this error (as 
azine
shown in Figure 6) where Inbox is a local OleVariant variable, and 
f ValidInbox is a Boolean variable declared in the private section 
of the form.

By encasing the logon in a try..except block, and then accessing the 
Inbox within another try..except block, you can determine whether 
there was a successful connection to the message store, as well as 
whether the login information was valid.

After successfully accessing the Inbox, the list of messages in the Inbox 
can be retrieved (see “Messages = dispinterface” in the MAPI_TLB 
file). They can also be filtered and/or sorted. The following code is 
an example of filtering out previously read messages, and then sorting 
the remaining messages based on the time they were delivered. Inbox, 
InMessages, and MessageFilter are all OleVariant variables:

Inbox := fSession.Inbox;
InMessages := InBox.Messages;
MessageFilter := InMessages.Filter;
MessageFilter.UnRead := 1;  // Only access unread messages.
InMessages.Sort(CdoDescending, CdoPR_DELIVER_TIME);

To filter the Inbox messages, first access its MessageFilter. Then set 
the filter to one of the available values, as defined in the MessageFilter 
structure shown in the MAPI_TLB file under “MessageFilter = dispin-
terface.” In this case, any messages that have been read are filtered out, 
but other filters, such as sender, size, or subject, can be used.

Sorting the messages is done with the message’s Sort function, defined as:

function Sort(SortOrder: OleVariant;
  PropID: OleVariant): OleVariant;

The SortOrder parameter is simply none, ascending, or descending, cor-
responding to CdoSortOrder (see MAPI_TLB): CdoNone, CdoAscending, 
and CdoDescending. The PropID parameter defines what the messages 
will be sorted by. In this example, it’s delivery time, but many more are 
listed under CdoPropTags in the MAPI_TLB file.

Now that the Inbox messages are sorted, the individual messages 
can be retrieved. There are two ways to do this. The first is to 
simply get the count of messages in the Inbox and iterate from 
1 to that count (InMessages.Count). The second is to use the 
message’s GetFirst and GetNext functions. When using this second 
method, every message retrieved must be checked to see if it’s 
valid by passing it to the VarIsNull and VarIsEmpty functions. 
If either of these functions comes back positive, then the last 
message in the list was already retrieved.



On the ’Net

Recipients := SingleMessage.Recipients;
for I := 1 to Recipients.Count do begin
  SingleRecipient := Recipients.Item[I];
  if SingleRecipient.Type = CdoTo then
    ccstr := 'To: '
  else
    ccstr := 'Cc: ';
  RecipientsListBox.Items.Add(ccstr +
    string(SingleRecipient.Name) + '; ' +
    string(SingleRecipient.Address));
end;

Figure 7: Distinguishing mail recipients.

Figure 8: The first demonstration application allows login and 
lists messages in the Inbox.

Figure 9: The second demonstration application uses CDO to 
send messages.

ANewMessage := fSession.OutBox.Messages.Add(
  SubjectEdit.Text, TextEdit.Text, 'IPM.Note', CdoHigh);

if (VarIsNull(ANewMessage) or 
    VarIsEmpty(ANewMessage)) then
  Exit;
try
  ANewMessage.Recipients.Delete;
  ANewMessage.Recipients.AddMultiple(ToEdit.Text, CDOTo);
  // Bring up dialog if bad address.
  ANewMessage.Recipients.Resolve(True);  
  ANewMessage.Update;
  ANewMessage.Send(True, False, 0);
except
  on E: Exception do 
    ShowMessage('Send Failed: ' + E.Message);
end;

Figure 11: Remaining code to send an e-mail.
The following code shows the Inbox messages being retrieved and then 
added to a listbox with their IDs as text (SingleMessage is an OleVariant):

SingleMessage := InMessages.GetFirst;
while not (VarIsNull(SingleMessage) or 
      VarIsEmpty(SingleMessage)) do begin
  MessageListBox.Items.Add(string(SingleMessage.ID));
  SingleMessage := InMessages.GetNext;
end;

If desired, the information associated with each message could be 
retrieved in the loop. However, because the ID of each message is 
actually a GUID and unique to the mailstore, for this example, the 
ID will be used to retrieve the message contents later, from the session 
itself, when the listbox is clicked:

GUIDstr := MessageListBox.Items[MessageListBox.ItemIndex];
SingleMessage := fSession.GetMessage(GUIDStr, EmptyParam);

Once a message is assigned to an OleVariant variable, SingleMessage 
in this case, its properties can be accessed. The Message structure can 
be viewed in the MAPI_TLB under “Message = dispinterface.” So, to 
show the message’s subject, you would use:

SubjectLabel.Caption :=
  'Subject: ' + string(SingleMessage.Subject);

Subject, time sent, time received, body, size, as well as many other 
values associated with the message, can be easily retrieved in this 
manner. Other values, such as importance, are simply translated 
using the constants listed in the MAPI_TLB file. Still others, 
such as recipients and attachments, require a little more work, but 
10 October 2000 Delphi Informant Magazine
aren’t difficult to reach. As in the first 
example, in which recipients were con-
tained and accessed from an AddressList, 
the recipients of a message are contained 
in its Recipients property. But in this 
case, the recipients can be distinguished 
as directly mailed or CCd (see Figure 7).

I must mention something now, before 
delving into the last example on sending 
mail: the message type property. When 
running this example, the message type will be “IPM.Note” for most 
messages received. For Outlook to easily handle e-mails, make sure 
that any e-mails sent by your application have their corresponding 
type declared as “IPM.Note.”

I should also mention that two example applications accompany this 
article, and are available for download (see end of article for details). 
The first demonstrates the techniques we’ve discussed so far, and is 
show in Figure 8. 

Send Mail Example
This last example will briefly demonstrate how to send e-mail via 
CDO. The example application is shown in Figure 9. Figure 10 
shows the structures involved.

In this example, the logon process is similar to that of the Inbox 
example, but checks for a valid Outbox. After this, once the 
needed information to send is ready, create a new message with the 
message’s Add function:

function Add(Subject: OleVariant; Text: OleVariant;
  Type_: OleVariant; Importance: OleVariant): OleVariant;

Session
Outbox

Messages
Message

Recipients

Figure 10: Object 
hierarchy used in 
third example.



On the ’Net
The Subject and Text parameters are the subject and text of the 
e-mail message to be sent. Type_ is the string “IPM.Note” as previ-
ously described. Importance is one of the CdoImportance constants 
(CdoLow, CdoNormal, CdoHigh) defined in the MAPI_TLB file. To 
begin, call the Add function and place the result into an OleVariant 
variable, ANewMessage in this case. Figure 11 shows the rest of the 
code needed to send an e-mail.

Before sending the e-mail, clear any recipients that were previously 
listed. Then add the sending e-mail recipient to the message’s recipi-
ents with the AddMultiple function. After adding the recipients (with 
CDOTo, CDOCc, or CDOBcc), use the Resolve function to check that 
the e-mail addresses given are in the proper format. If True is passed 
to the Resolve function, a dialog box will pop up if any of the given 
addresses are badly formed. Then update the message.

The Send function sends the e-mail. The Send function is defined as:

function Send(SaveCopy: OleVariant; ShowDialog: OleVariant;
  ParentWindow: OleVariant): OleVariant;

Setting the SaveCopy parameter to True will put a copy of the 
sent message into the sender’s “Sent Item” mailbox. The ShowDialog 
parameter, when True, will cause an extra dialog box to pop up 
on sending. Note that this dialog box will cause an exception if 
cancelled. The ParentWindow can be set to 0, or a valid window 
handle, for the ShowDialog’s dialog box to use.

Conclusion
Although these examples have been brief, I hope they have given you a 
taste of how to use CDO to build mail-enabled applications. Although 
there’s plenty of information about CDO that can’t be covered in this 
article, I recently bought an excellent book on CDO called Professional 
CDO Programming (listed at the end of this article). If you need to 
develop CDO applications, I highly recommend this book. Although it’s 
aimed at C and Visual Basic programmers, once you understand how to 
use CDO with Delphi, it isn’t difficult to figure out how to translate the 
COM functionality for use with Object Pascal. ∆

Bibliography
§ ADSI CDO Programming with ASP by Mikael Freidlitz and Todd 

Mondor [Wrox Press, 1999].
§ Professional CDO Programming by Dan Mitchell, Siegfried 

Weber, and Donald Xie, [Wrox Press, 1999].
§ White paper: Collaborative Data Objects: Using E-Mail in 

Your Application by Dr Bruce E. Krell and Ken Miller 
(http://msdn.microsoft.com/library/techart/collabdataobjs.htm).

The files referenced in this article are available on the Delphi Informant 
Magazine Complete Works CD in INFORM\00\OCT\DI200010KR.

Kristen has been programming Windows applications for over 10 years. She works 
at Vast Solutions, Inc., a pioneering wireless application integration and outsourc-
ing company. She can be contacted there at Kristen_Riley@Vast.com.
11 October 2000 Delphi Informant Magazine

http://msdn.microsoft.com/library/techart/collabdataobjs.htm


12 October 2000 Delphi Informant Magazine

Dynamic Delphi
Word Automation / Delphi 5 / Microsoft Word 97, 2000

By Ron Gray
Automating Word
Part II: Word Components in Delphi and Using OLE
Microsoft Word offers many features beyond simple word processing. Using Automa-
tion and OLE (Object Linking and Embedding), any Delphi application can easily 

integrate Word functionality. Last month, the first installment of this two-part series 
examined Automation in Delphi and looked at the Word object model. This installment 
presents the Word components available in Delphi 5, and looks at how to link and embed 
documents using OLE.
Delphi 5 Word Components
Before describing the Word components, consider 
how compile-time Automation is handled. Word 
provides type information about its objects, meth-
ods, and properties in a type library (msword8.olb 
for Word 97, msword9.olb for 2000). Delphi pro-
vides the ability to import the file and create wrap-
per classes to the interfaces.

The type library defines the Word Application 
object, which is the top-level object through which 
all other objects are available. However, the library 
also defines CoClasses for several other global 
objects that can be accessed directly by calling the 
Create method of the CoClass client proxy class. In 
other words, they are stand-alone objects that don’t 
need to go through the Application object. For 
example, rather than using an Application object 
to create a document, the Document object can be 
used directly.

Delphi 5’s Word components elegantly wrap the 
CoClasses, and greatly simplify and encapsulate the 
Automation process. The following Word compo-
nents are available in Delphi 5, on the Servers page 
of the Component palette:
§ WordApplication represents the entire Microsoft 

Word application, and is the top-level object of 
the Word object model.
§ WordDocument represents a document.
§ WordFont contains font attributes (such as name, 

size, color, and so on) for a specified object.
§ WordParagraphFormat represents all the format-

ting (such as alignment, spacing, and style) for 
a paragraph.
§ WordLetterContent represents elements of a letter.
These components can be used independently, or 
while connected to each other. Some can be created 
and applied to properties of other components. For 
example, to change the paragraph formatting in 
multiple documents, you could create and format a 
WordParagraphFormat object, then assign it to the 
Selection property of each document.

Sample code presented in Part I of this series 
called CoApplication_.Create to return an 
_Application data type. Using the component, 
the initialization code changes to this:

var
  oWord : TWordApplication;
begin
  oWord := TWordApplication.Create(Self);
  oWord.Connect;
  ...
end;

Of course, TWordApplication still calls 
CoApplication_.Create. So what has changed? A lot. 
Not only have the events been wrapped in the com-
ponents, much of the management work has been 
added as well. TWordApplication and the other Word 
components descend from TOleServer — an abstract 
class added to Delphi 5 that represents an imported 
COM server. TOleServer provides a framework for 
connecting to Automation servers, dispatching events, 
and performing other COM-related work.

Another benefit of the Word components is that 
many of the common methods have been over-
loaded to support variable parameters. This allows 
you to omit unused parameters, so code that used 
to look like this:



oWord.ActiveDocument.PrintOut(EmptyParam, EmptyParam, with WordApplication1 do begin

Dynamic Delphi
  EmptyParam, EmptyParam, EmptyParam, EmptyParam,
  EmptyParam, EmptyParam, EmptyParam, EmptyParam,
  EmptyParam, EmptyParam, EmptyParam, EmptyParam);

can omit unused parameters to be written like this:

oWord.ActiveDocument.PrintOut;

Getting Started
There are many subtleties when integrating Word into a Delphi 
application, but the basics involve connecting to the Automation 
server (Word), then manipulating documents.

Establishing a Connection
Before using any of the Word components, a connection must be 
established between the Delphi application and the Word Automa-
tion server. For a number of reasons, the component may fail to con-
nect to the server. Therefore, you should always wrap the connection 
in a try..except statement:

try
  WordApplication1.Connect;
except on E: Exception do
  begin
    E.Message := 'Word unavailable.';
    raise;
  end;
end;
WordApplication1.Visible := True;

How the connection is established depends on three important 
properties. First, AutoConnect specifies whether the server is loaded 
when the application first starts. Second, ConnectKind determines 
how the connection to the server is established. It can be set to the 
following possible values:
§ ckRunningOrNew attaches to a running server or creates a new 

instance of the server.
§ ckNewInstance always creates a new instance of the server.
§ ckRunningInstance only attaches to a running instance of the server.
§ ckRemote binds to a remote instance of the server located on the 

machine for RemoteMachineName.
§ ckAttachToInterface doesn’t bind to the server. Instead, the applica-

tion supplies an interface using the ConnectTo method, which is 
introduced in descendant classes.

Third, RemoteMachineName specifies the machine running the COM 
server, when ConnectKind is ckRemote.

The application might require a specific connection type. However, 
to reduce load time, you should connect to a running instance of 
Word when you can. In applications where documents are heavily 
manipulated, the AutoConnect property can be set to True to load 
Word when the application starts.

Once the Word component is successfully connected, you can call 
properties and methods of that object.

Using the Application Object
The Application object is used mainly to set application-specific attri-
butes (such as the size and appearance of the application window), 
or to get access to other objects (such as the Documents object). The 
following example uses the WordApplication component to set the size 
of the window:
13 October 2000 Delphi Informant Magazine
  WindowState := wdWindowStateNormal;
  Caption := 'Integrating Word and Delphi';
  Height := 300;
  Width := 300;
  Left := 0;
  Top := 0;
  Visible := True;
end;

When managing multiple documents, it’s easier to use the Application 
object, because the Documents property already contains a list of all 
open documents. Assign individual documents to a WordDocument 
object as needed. An earlier example showed how to create a new 
document with the Application object:

WordApplication1.Documents.Add(EmptyParam, EmptyParam);

The return value of the Add method is an interface to the new 
Document object. To manipulate the document, it must be assigned 
to a variable, such as a WordDocument object. The following code 
uses the Application object to create a new document, and assign it 
to a WordDocument object:

WordDocument1.ConnectTo(
  WordApplication1.Documents.Add(EmptyParam, EmptyParam));

The ConnectTo method is used to connect the WordDocument object 
to an interface of the Application object, i.e. the Word document.

Working with Documents
You can reuse the same WordDocument variable to connect to any 
document. The following example connects the WordDocument to 
the active document:

WordDocument1.ConnectTo(WordApplication1.ActiveDocument);

This example connects to a specific document:

WordDocument1.ConnectTo(
  WordApplication1.Documents('MyDoc.Doc'));

A WordDocument object can also be used, without the Application 
object, to manage a single document:

WordDocument1.ConnectKind := ckRunningOrNew;
WordDocument1.Connect;

To save a new document the first time, use the SaveAs method:

var
  FileName: OleVariant;
begin
  FileName := 'MyDoc.Doc';
  WordDocument1.SaveAs(FileName);
end;

To save an existing document, call the Save method.

Working with Text
Word objects exist for manipulating the various elements of a 
document: characters, words, sentences, paragraphs, and sections. 
These objects provide access to Range or Selection objects, which 
are used to modify text. The Range object represents a contiguous 



Dynamic Delphi
area in a document defined by a starting and ending character 
position. A Selection object represents the selection in a document 
window pane.

The following example creates a Range object at the beginning of the 
document, and inserts some text (see Figure 1):

var
  Text, nStart, nEnd: OleVariant;
begin
  nStart := 0;
  nEnd := 0;
  Text := 'Hey now! ';
  WordDocument1.Range(nStart, nEnd).InsertBefore(Text);
end;

This next example marks the second paragraph in bold:

WordDocument1.Paragraphs.Item(2).Range.Bold := 1;

This example does the same thing, but uses the WordFont object:

WordFont1.ConnectTo(
  WordDocument1.Paragraphs.Item(2).Range.Font);
WordFont1.Bold := 1;

Working with Other Objects
Of course, there are many other objects available in Word for 
working with text. The Find and Replacement objects, Table and 
other associated objects, and the HeaderFooter object are just a few.
14 October 2000 Delphi Informant Magazine

Figure 1: The sample application in action. Here, it changes 
properties of the Application object, then inserts text in a document.

Class Event Description

Application DocumentChange Occurs when a new document is
  opened, or when another docum
Application Quit Occurs when the user quits Wor
Document Close Occurs when a document is clos
Document New Occurs when a new document b
Document Open Occurs when a document is ope
ActiveX GotFocus Occurs when focus is moved to 
ActiveX LostFocus Occurs when focus is moved fro

Figure 2: Event interfaces in Microsoft Word.
Events
The Word Application object publishes three event interfaces, shown 
in Figure 2. They are exposed in their appropriate components.

These events let the Delphi application monitor a specific document, 
or set of documents. For example, by responding to the Close event, 
an application can create a separate backup copy, or save the docu-
ment to a BLOb (Binary Large Object) field.

Object Linking and Embedding
So far, this article has presented ways to automate Word from a 
Delphi application. This approach manipulates Word as a separate 
application to control separate, external Word documents. However, 
to truly integrate Word, the application must be able to link or embed 
documents. This would be necessary in the following situations:
§ The functionality of the Delphi application requires certain Word 

documents (such as mail merge templates). A safer approach 
would be to store the documents in BLOb fields, rather than have 
them external to the application.
§ The Delphi application must display the contents of Word docu-

ments directly on a Delphi form, without loading Word each 
time.
§ Users want to edit the Word document from within the Delphi 

application, without launching Word.

These requirements can be satisfied with OLE 2. OLE is closely 
related to Automation, and is also built on the COM architecture. 
It enables applications to create compound documents that contain 
components of other applications. In other words, a Delphi applica-
tion can store and manage documents created in Word.

Object linking allows you to paste information as a link into an appli-
cation, and have the data dynamically updated when it is changed 
in the source application. Double-clicking on the data launches the 
source application for editing. Object embedding allows you to create 
compound documents where data from one application can be placed 
in another application as an object. A Delphi application can display 
the data of an OLE object, without knowing the application that 
created it. Double-clicking on the object can initiate in-place activa-
tion. This means that, rather than launching the source application 
for editing, the client application temporarily acts like the source 
application by changing its menus. This is possible because the object 
contains all the necessary information to edit itself.

The client application must use a container to host the OLE 
object. Delphi’s TOleContainer encapsulates the complexity of 
embedding or linking OLE objects. There are several ways to get 
the object into the container. An object can be pasted (using Paste 
or PasteSpecialDialog), inserted (using InsertObjectDialog), dragged 
and dropped, loaded from a file (CreateObjectFromFile), created 
directly (CreateObject), or streamed (CreateFromStream). Delphi’s 
OLE Container samples demonstrate most of these features, so 

there’s no need to describe 
 created, an existing document is 
ent is made the active document.
d.
ed.
ased on a template is created.
ned.
an embedded ActiveX control.
m an embedded ActiveX control.
them here. There are MDI 
and SDI versions in the 
\Delphi5\Demos\ActiveX\
Olecntrs directory.

These demonstrations show 
that Word documents can be 
created, stored, and edited 
directly in OLE containers 
without using the Word com-



ponents. You can even make calls to the Word object through the must be managed by the developer. Likewise, the Word components 

 

Dynamic Delphi
container. The example in Figure 3 uses the OLE container to 
create a new document, switch to in-place activation, activate the 
document, then insert some text.

Note that the call to CreateObject passes Word.Document as the class 
name to create a new document. The second parameter (False) indicates 
the document won’t be displayed as an icon, but as it would be displayed 
by the server application. The call to DoVerb is made with ovPrimary, 
the default action, to activate the object. Once the object is activated, 
you can get access to it through the OleObject property. The last state-
ment in the previous code uses OleObject to return the Word Document 
object. It then uses the Application object to insert the text.

Referencing the Document object in this way uses run-time Automa-
tion, described earlier in this article. The primary disadvantages of 
this approach are lack of syntax checking at compile time, and slower 
execution. Before making multiple Automation calls to a container 
object, consider assigning it to a WordDocument object to get the 
benefits of compile-time Automation. The following example assigns 
the container object created previously to a WordDocument object, 
and inserts some more text:

WordDocument1.ConnectTo(
  IUnknown(OleContainer1.OleObject) as _Document);
WordDocument1.Application.Selection.TypeText(
  'Hey Now! Again!');

The object is cast to the IUnknown interface of a _Document object, 
which is what the ConnectTo method expects.

Saving Documents to Tables
The OleContainer control is used to link or embed OLE objects, 
such as Word documents. However, this link is not persistent and 
15 October 2000 Delphi Informant Magazine

var
  oStream : TBlobStream;
begin
  oStream := nil;
  try
    Table1.Open;
    try
      oStream := TBlobStream.Create(Table1.FieldByName(
                   'OleObject') as TBlobField, bmRead);
      OleContainer1.LoadFromStream(oStream);
      Olecontainer1.DoVerb(ovPrimary);
    except
      MessageDlg(
        'Document not read successfully from BLOb f ield.',
        mtWarning, [mbOK], 0);
    end;
  finally
    oStream.Free;
    Table1.Close;
  end;
end;

Figure 4: Retrieving a document from a BLOb field, placing it in a 
container, and activating it.

OleContainer1.CreateObject('Word.Document', False);
OleContainer1.AllowInPlace := True;
OleContainer1.DoVerb(ovPrimary);
OleContainer1.OleObject.Application.Selection.TypeText(
  'Hey Now!');

Figure 3: A TOleContainer object is used with in-place activation 
and run-time Automation.
in Delphi 5 must also be managed in the sense that a mechanism for 
loading documents must be implemented. If direct links to specific 
documents must be maintained by the Delphi application, then a 
common approach is to save the name and location of the external 
document in text fields, or save the actual document in a BLOb field.
Each has advantages and drawbacks.

Saving only the name and location of the document allows other 
applications to share documents and make edits, and doesn’t cause 
a load on the database. However, when an application relies on 
external documents, the rule of entropy usually makes them disap-
pear. Saving documents directly to BLOb fields as OLE objects is 
easy and reduces the risk of losing them, but bloats the database 
and reduces performance.

Consult your database documentation to see how OLE objects 
should be stored in tables. For example, BLOb data in InterBase 
is further defined by a subtype. OLE objects must be stored in 
a BLOb field with subtype 0, the default used to store binary 
data. The following SQL statement adds a BLOb field to the 
CustomerLetter table:

ALTER TABLE CustomerLetter
  ADD OleObject BLOB SUB_TYPE 0 SEGMENT SIZE 80

TBlobStream is used to access or modify the value of a BLOb 
field. Word documents are loaded from BLOb fields into 
TBlobStream objects. From here, it can easily be loaded into an 
OLE container or WordDocument object. The example in 
Figure 4 retrieves a document from a BLOb field, puts it in a 
container, then activates it.

Note that the stream must be created and freed each time. You 
should never reuse a BLOb stream. To save the contents of the OLE 
container back to the BLOb field, use the SaveToStream method, as 
shown in Figure 5.
var
  oStream : TBlobStream;
begin
  oStream := nil;
  if OleContainer1.State <> osEmpty then
    try
      Table1.Open;
      try
        Table1.Edit;
        oStream := TBlobStream.Create(Table1.FieldByName(
          'OleObject') as TBlobField, bmReadWrite);
        OleContainer1.SaveToStream(oStream);
        Table1.Post;
        MessageDlg('Document saved to BLOb f ield.',
                   mtInformation, [mbOK], 0);
      except
        MessageDlg('Document not saved to BLOb f ield.',
                   mtWarning, [mbOK], 0);
      end;
    finally
      oStream.Free;
      Table1.Close;
    end
  else
    MessageDlg('There is no document to save.',
               mtWarning, [mbOK], 0);
end;

Figure 5: Using the SaveToStream method to save the contents of 
the OLE container back to the BLOb field.



Dynamic Delphi

Figure 6: An application demonstrating these techniques is avail-
able for download. 
This time, the stream was created with read/write capabilities so 
changes can be saved. The code also verifies that the container isn’t 
empty before saving. A sample application that demonstrates all of 
the techniques discussed in this article (see Figure 6) is available for 
download; see end of article for details.

Reverse Role Playing
This article has discussed using a Delphi application as an 
Automation controller of the Word Automation server. This allows 
the Delphi application to “control” Word documents. However, 
because a Delphi application can also be an Automation server, and 
Word can also be an Automation controller, it’s possible to reverse 
the roles so that Word can control parts of a Delphi application. 

Consider a customer-locate dialog box in a Delphi application 
that can be called from anywhere in the application, and returns 
the record of the selected customer. By converting the Delphi 
application to an Automation server, and exposing the customer-
locate dialog box through a method, users of Microsoft Word can 
invoke the locate dialog box to find customers. Once the customer 
is selected, the name and address can be automatically entered in 
the document.

Conclusion
Microsoft’s Automation and OLE 2 technologies make it possible 
to integrate Word into Delphi applications. Delphi 5’s Word compo-
nents make it easy. With just a few lines of code, applications can 
become powerful word processors. However, the uses of Word extend 
far beyond basic word processing, because there are so many other 
features available. The benefits can be tremendous. ∆

References
§ The Word 97 object model is documented in the Help file 

vbawrd8.hlp. This file comes with Office 97, but is not 
installed by default. To install it, run the Microsoft Office 97 
Setup program and select Add/Remove components. Select Help 

for Visual Basic under the help options. The Word 2000 object 
model is documented as part of the Microsoft Developer 
Network, Office 2000 Developer edition, which is installed as 
part of Office 2000 Developer.

§ Microsoft Office development information can be found at 
16 October 2000 Delphi Informant Magazine
 http://www.microsoft.com/officedev/.
§ See the Microsoft Office 2000 Visual Basic Programmer’s Guide for 

detailed information on, and examples of, automating Word 2000.

The files referenced in this article are available on the Delphi Informant 
Magazine Complete Works CD in INFORM\00\OCT\DI200010RG.

Ron Gray is a software developer specializing in business database applications. 
He has written numerous articles using different languages and is the author 
of LookUp Manager, a collection of components for visually managing lookup 
codes and abbreviations in applications. He can be reached via e-mail at 
rgray@compuserve.com.

http://www.microsoft.com/officedev/


17 October 2000 Delphi Informant Magazine

OP Tech
RTTI / Wizards / Delphi 3-5 / Object Persistence / Databases

By Keith Wood
Database Persistent Objects
Part II: Generating TDBPersistent Classes with a Wizard
Last month we looked at how to create a class that could automatically store its 
published properties in a relational database. Now it’s easy to create classes that 

have this ability; we simply derive them from TDBPersistent and declare the properties. 
There are some bookkeeping steps involved, so a constructor and assignment method 
would be useful. To make it even easier, therefore, we can create a wizard that generates 
all of this for us.
Delphi Wizards
Delphi wizards (also known as experts) allow us to 
extend the abilities of the Delphi IDE. They come 
in four basic types: 
1) Project wizards that generate entire programs.
2) Form wizards that build single forms or units 

(these types appear in the New Items dialog 
box).

3) Standard wizards that appear on the Help 
menu.

4) Add-in wizards that have full access to the 
Delphi environment. 

The type dictates how we interact with the wizard 
and what the expected result is.

All wizards are created as DLLs. They must export 
a single function, InitExpert, which is called by 
Delphi (when it’s loaded) to register the new 
wizard. Inside this function it calls RegisterProc, 
passing an instance of the expert as a parameter. 
Thereafter, Delphi can enquire through the expert 
interface to determine its type and any other neces-
sary details.

Since we’re creating a single unit to be incorporated 
into a larger application, we’ll create a form wizard. 
To begin, we must derive it from TIExpert (defined 
in the ExptIntf unit), which is the base for all 
experts and wizards. We must then override several 
of the class’ methods to customize it for our use. 
The following four methods are required for all 
wizards: 
1) GetStyle is revised to return the form style 

(esForm for our new wizard).
2) GetState indicates that the wizard is available 

(esEnabled).
3) GetName returns the new name.
4) GetIDString returns a unique identifier. The 

identifier must be unique world-wide and is 
usually of the form 
<Company>.<ExpertName>.

The rest of the methods are optional depending on 
the style of the wizard. For a form wizard we need 
the following: GetAuthor provides the name of the 
author, GetComment returns a longer description, 
and GetPage indicates on which page in the New 
Items dialog box the wizard should appear. GetGlyph 
must be overridden to return an image for display 
in this dialog box. With the Image Editor tool, open 
the resource file for the project (.res) and add a new 
icon. Update its appearance and give it a meaningful 
name before saving the file. Back in the code, we 
load this resource with the LoadIcon function.

Setting the style to a form wizard means it will 
appear as an entry in the dialog box invoked by 
the File | New menu item. The previously men-
tioned methods are then called to determine the 
appearance of the wizard. Extended details, such 
as the description and author’s name, are shown 
if we select the View Details option on the popup 
menu. When we activate the wizard, Delphi calls 
its Execute method to perform its functionality.

Our wizard displays a dialog box to obtain the infor-
mation necessary to generate the new unit. When the 
Finish button is clicked, it writes the code out to a file, 
and then adds that file to the current project.

User Interface
The dialog box presented to the user consists of 
two pages: one for the class name, parent class, 



OP Tech
and the name of the file to be created; and one for the list of 
properties belonging to the class (see Figures 1 and 2).

The parent class defaults to TDBPersistent, but can be replaced with 
another name. This is done because the new class must eventually derive 
from this base class to provide the desired abilities of automatic storage 
in a relational database. Any value may be entered as the name of the 
new class (an initial “T” is added as necessary), but remember that 
this also becomes the name of the database table. The output filename 
defaults to the class name (without the initial “T”) plus a .pas extension, 
but (again) can be overridden. Clicking the Browse button allows us to 
search for an appropriate output location and filename. The Save dialog 
box also warns us if we plan to overwrite an existing file.

On the second page, we have a string grid containing the list of 
properties belonging to the new class. Entries are added and removed 
with the Add and Delete buttons. Each entry consists of the property 
name, a flag to indicate whether it’s a primary key field, and its type. 
The spin control following the type name allows the length of strings 
to be specified and is ignored for all other types. Types can be selected 
from the drop-down list, or can be entered manually if they’re not 
one of the standard types.
18 October 2000 Delphi Informant Magazine

Figure 1: The DBPersistent Wizard in action. First, the class 
name, parent class, and filename are entered ...

Figure 2: ... then the properties are described.
Generation
Now we have all the details necessary for creating the new unit. 
Although Delphi provides several classes to assist in generating new 
form files (using proxies) and their associated units, our needs are 
much simpler. We’re only producing a single-unit file that consists 
solely of text. Hence we can place the code into a string list, and use 
its SaveToFile method to construct the resulting unit (see Figure 3).

We use a string constant to provide the basic text for the generated 
unit. This has placeholders for variable sections within it for use 
with the Format function. These are replaced by variable values (for 
simple substitutions), or by the result of various functions (for more 
complex code). Examples of the functions can be seen in Figure 4. 
They provide the list of internal fields for the class, the published 
properties, and a copy-assignment method, respectively.

The final step in producing the new unit is to incorporate it into 
the existing project. We can achieve this through the CreateModule 
method of the ToolServices object (see Figure 5). Normally this takes 
as parameters streams that contain the code and graphical (.dfm) parts 
of a unit, along with a unit name and flags indicating how the other 
items are to be treated. In our case, we are generating the unit directly 
to a file, so we don’t need to fiddle around with the streams.

By providing the name of the new file, as returned by the GenerateUnit 
method, and an appropriate flag, cmExisting, we can leave the stream 
parameters set to nil, and have the unit read from disk. The other flags 
add the unit to the current project (cmAddToProject), and bring the editor 
window for the newly opened file to the fore (cmShowSource).

Installation
The completed wizard is compiled into a DLL. It’s suggested that pack-
ages are used to reduce the overall size of the final product; instead of 
a 400KB monster, it can become a svelte 30KB. Move the DLL to an 
appropriate directory, and then tell Delphi about it. To do this we need to 
update the registry item containing the list of wizards to load.
{ Create the unit f ile for this persistent object. }
function TfrmDBPersistentGen.GenerateUnit: string;
const
  sPKPref ixes: 
    array [Boolean] of string[3] = ('', sPKPref ix);
var
  slsUnit: TStringList;
  sClassName, sParentName, sUnitName: string;
begin
  Result := edtFilename.Text;
  slsUnit := TStringList.Create;
  try
    sClassName := edtClass.Text;
    if sClassName[1] <> 'T' then
      sClassName := 'T' + sClassName;
    sParentName := edtParent.Text;
    if sParentName[1] <> 'T' then
      sParentName := 'T' + sParentName;
    sUnitName := ChangeFileExt(
      ExtractFileName(edtFilename.Text), '');
    slsUnit.Text := Format(sUnitSource,
      [sUnitName, sClassName, GetUses, GetTypes,
       sClassName, sParentName, GetPrivateFields,
       GetPublicAttrs, GetPublishedProps, sClassName,
       GetConstructor, GetAssign, sClassName]);
    slsUnit.SaveToFile(edtFilename.Text);
  f inally
    slsUnit.Free;
  end;
end;

Figure 3: Generating the unit.



OP Tech
Under the HKEY_CURRENT_USER\Software\Borland\Delphi\
n.0\Experts key in the Windows registry (where n is the version 
number for Delphi), add a new string value. Set its name to DBPGen, 
and its value to the full path to the DLL we just created. Note that 
a recompile of the wizard is necessary for each version of Delphi, 
because the expert interface internals have changed over time.

The next time Delphi is started, we should find a new option in the 
New Items dialog box. Double-click the DBPersistent Generator icon 
19 October 2000 Delphi Informant Magazine

{ Generate list of internal f ields for the properties. }
function GetPrivateFields: string;
var
  iIndex: Integer;
begin
  Result := '';
  with stgProperties do
    for iIndex := 1 to RowCount - 1 do
      if Cells[0, iIndex] <> sDefProperty then
        Result := 
          Result + Format(sFields, [Cells[0, iIndex],
          sPKPref ixes[IsPrimaryKey(iIndex)] +
          Cells[1, iIndex]]);
end;

{ Generate the published properties. }
function GetPublishedProps: string;
var
  iIndex: Integer;
begin
  Result := '';
  with stgProperties do
    for iIndex := 1 to RowCount - 1 do
      if Cells[0, iIndex] <> sDefProperty then
        Result :=
          Result + Format(sProperty, [Cells[0, iIndex], 
          sPKPref ixes[IsPrimaryKey(iIndex)] +
          Cells[1, iIndex]]);
end;

{ Generate the copy method. }
function GetAssign: string;
var
  iIndex: Integer;
begin
  Result := Format(sAssign1, [sClassName]);
  with stgProperties do
    for iIndex := 1 to RowCount - 1 do
      Result := 
        Result + Format(sAssign2, [Cells[0, iIndex]]);
  if sParentName = sTDBPersistent then
    Result := Result + sAssign3;
  Result := Result + sAssign4;
end;

Figure 4: Selected wizard functions.

{ Run the expert and open the resulting f ile. }
procedure DBPersistentExpert(ToolServices: TIToolServices);
var
  sFilename: string;
begin
  with TfrmDBPersistentGen.Create(Application) do
    try
      if ShowModal = mrOK then begin
        sFilename := GenerateUnit;
        ToolServices.CreateModule(sFilename, nil, nil,
          [cmAddToProject, cmShowSource, cmExisting]);
      end;
    f inally
      Free;
    end;
end;

Figure 5: Running the wizard.
to invoke it, enter appropriate values, and click the Finish button. A 
new unit is created and added to the current project. An example 
unit, corresponding to the entries displayed in Figures 1 and 2, is 
shown in Listing One.

Conclusion
The database persistence provided by the classes developed last 
month makes the process of linking objects with a relational database 
very simple. This month, we’ve made it even easier by creating a 
form wizard that extends Delphi, and generates the necessary class 
definition for us. This, of course, greatly decreases the effort, and the 
opportunity for introducing coding errors. ∆

The files referenced in this article are available on the Delphi Informant 
Magazine Complete Works CD in INFORM\00\OCT\DI200010KW.

Keith Wood is an analyst/programmer with CCSC, based in Atlanta. He started 
using Borland’s products with Turbo Pascal on a CP/M machine. Often working with 
Delphi, he has enjoyed exploring it since it first appeared. You can reach him via 
e-mail at kbwood@compuserve.com.
Begin Listing One — TContact
unit Contact;
{ TContact - database persistent object
  Generated by DBPersistent Expert. }
interface

uses
  Classes, Controls, DBPersist;

type
  String15 = string[15];
  String50 = string[50];

  TContact = class(TDBPersistent)
  private
    FContactId: TPKInteger;
    FName: String50;
    FOrganisation: String50;
    FPhone: String15;
    FPhysicalAddr: TAddress;
    FMailingAddr: TAddress;
    FLastContact: TDate;
  public
    constructor Create(dbmManager: TDBManager;
      ContactId: TPKInteger);
    procedure Assign(Source: TPersistent); override;
  published
    property ContactId: TPKInteger
      read FContactId write FContactId;
    property Name: String50 read FName write FName;
    property Organisation: String50
      read FOrganisation write FOrganisation;
    property Phone: String15 read FPhone write FPhone;
    property PhysicalAddr: TAddress
      read FPhysicalAddr write FPhysicalAddr;
    property MailingAddr: TAddress
      read FMailingAddr write FMailingAddr;
    property LastContact: TDate
      read FLastContact write FLastContact;
  end;

implementation

{ TContact ---------------------------------------------- }



OP Tech
{ Initialization. }
constructor TContact.Create(dbmManager: TDBManager;
  ContactId: TPKInteger);
begin
  inherited Create(dbmManager);
  Self.ContactId := ContactId;
end;

{ Copy TContact. }
procedure TContact.Assign(Source: TPersistent);
begin
  if Source is TContact then
    with TContact(Source) do begin
      Self.ContactId := ContactId;
      Self.Name := Name;
      Self.Organisation := Organisation;
      Self.Phone := Phone;
      Self.PhysicalAddr := PhysicalAddr;
      Self.MailingAddr := MailingAddr;
      Self.LastContact := LastContact;
      Exit;
    end;
  inherited Assign(Source);
end;

initialization
  RegisterDBPersistentClass(TContact);
end.

End Listing One
20 October 2000 Delphi Informant Magazine



21 October 2000 Delphi Informant Magazine

On Language
Windows Shortcuts / COM / Interfaces

By Bill Todd

IShellLinkA = 
  [SID_IShellL
  function Get
    var pfd: T
    stdcall;
  function Get
    stdcall;
  function Set
  function Get
    cchMaxName
  function Set
    stdcall;
  function Get
    cchMaxPath
  function Set
    stdcall;
  function Get
    cchMaxPath
  function Set
    stdcall;
  function Get
  function Set
  function Get
    stdcall;
  function Set
  function Get
    cchIconPat
    stdcall;
  function Set
    iIcon: Int
  function Set
    dwReserved
  function Res
    stdcall;
  function Set
end;

Figure 1: The IS
A Quick Way to Shortcuts
A Component for Creating and Modifying Shortcuts
Windows shortcuts provide a way to have as many links to a file as you need — 
in as many folders as you want. Shortcuts are also the tool for adding a file to 

the Windows Start menu.
In Windows 3.x, creating shortcuts was easy. You 
had to learn a couple of simple DDE calls, and that 
was it. In 32-bit Windows, working with shortcuts 
is more complex, and requires the use of COM and 
interfaces. This article will look at working with 
shortcuts in detail, and show you how to build 
a custom component you can use to create and 
modify shortcuts in any folder.
interface(IUnknown) { sl. }
inkA]
Path(pszFile: PAnsiChar; cchMaxPath: Integer;
Win32FindData; fFlags: DWORD): HResult;

IDList(var ppidl: PItemIDList): HResult;

IDList(pidl: PItemIDList): HResult; stdcall;
Description(pszName: PAnsiChar;
: Integer): HResult; stdcall;
Description(pszName: PAnsiChar): HResult;

WorkingDirectory(pszDir: PAnsiChar;
: Integer): HResult; stdcall;
WorkingDirectory(pszDir: PAnsiChar): HResult;

Arguments(pszArgs: PAnsiChar;
: Integer): HResult; stdcall;
Arguments(pszArgs: PAnsiChar): HResult;

Hotkey(var pwHotkey: Word): HResult; stdcall;
Hotkey(wHotkey: Word): HResult; stdcall;
ShowCmd(out piShowCmd: Integer): HResult;

ShowCmd(iShowCmd: Integer): HResult; stdcall;
IconLocation(pszIconPath: PAnsiChar;
h: Integer; out piIcon: Integer): HResult;

IconLocation(pszIconPath: PAnsiChar;
eger): HResult; stdcall;
RelativePath(pszPathRel: PAnsiChar;
: DWORD): HResult; stdcall;
olve(Wnd: HWND; fFlags: DWORD): HResult;

Path(pszFile: PAnsiChar): HResult; stdcall;

hellLink interface.
The Interfaces
Shortcuts, or links as they are sometimes called, are 
actually binary files stored on your hard disk with 
the .lnk extension. The Windows shell includes 
a COM object named ShellLink for working 
with shortcuts. The ShellLink object implements 
two interfaces, IShellLink and IPersistFile, that 
define the methods for working with shortcuts. 
Figure 1 shows the declaration of IShellLink from 
SHLOBJ.PAS, and Figure 2 shows the declaration 
of IPersistFile from ACTIVEX.PAS.

Into the TWinShortcut Component 
The shell of the TWinShortcut custom compo-
nent was created with the Component Wizard 
in the Object Repository, using TComponent as 
its ancestor. Listing One (beginning on page 23) 
shows the finished component. To make things 
easier to find, the properties and their private 
member variables are in alphabetical order. In the 
implementation section, the methods are divided 
into three groups: constructor and destructor, 
property getter and setter, and custom methods. 
Within each of these groups, the methods are 
in alphabetical order. The constructor is overrid-
den to automatically create an instance of the 
ShellLink object using the following code:

FShellLink :=
  CreateComObject(CLSID_ShellLink) as 
  IShellLink;
FPersistFile := FShellLink as IPersistFile;

The first statement creates the ShellLink object 
by calling CreateCOMObject and passing the 
ShellLink object’s class ID as the parameter. The 
return value is cast to type IShellLink to provide a 
reference to the IShellLink interface and its meth-
ods. FShellLink is a protected member variable 
of type IShellLink. FPersistFile is also a protected 



IPersistFile = interface(IPersist)
  ['{ 0000010B-0000-0000-C000-000000000046 }']
  function IsDirty: HResult; stdcall;
  function Load(pszFileName: POleStr; dwMode: Longint):
    HResult; stdcall;
  function Save(pszFileName: POleStr; fRemember: BOOL):
    HResult; stdcall;
  function SaveCompleted(pszFileName: POleStr): HResult;
    stdcall;
  function GetCurFile(out pszFileName: POleStr): HResult;
    stdcall;
end;

Figure 2: The IPersistFile interface.

On Language
member variable and is of type IPersistFile. Casting FShellLink to 
IPersistFile provides an interface reference to the IPersistFile meth-
ods implemented by the ShellLink object. TWinShortcut’s destruc-
tor is overridden, and both FShellLink and FPersistFile are set to nil 
to destroy the ShellLink object. Because COM objects are reference 
counted, both variables must be set to nil before the ShellLink 
object will be destroyed.

You must be able to specify the name and location of the shortcut 
file you want to work with, and that capability is provided by three 
properties: ShortcutFileName, ShortcutPath, and SpecialFolderLocation. 
One big problem in working with shortcuts is figuring out where to 
create them. For example, if you want to create a shortcut on the 
user’s desktop, you have to know the path to the desktop folder, and 
that is different for different versions of Windows.

The solution is a Windows API function named 
SHGetSpecialFolderLocation, which takes three parameters. The 
first is a window handle, which can be set to zero. The second 
is a constant that identifies the folder you want. To find a partial 
list of constants, click Start | Programs | Borland Delphi 5 | Help 

| MS SDK Help Files | Win32 Programmers Reference and search 
for SHGetSpecialFolderLocation. If you have the MSDN Library 
CD, search for SHGetSpecialFolderLocation and you’ll find a list 
of over 40 folder constants. The Win32 Programmers Reference 
Help file also contains detailed information about IShellLink and 
IPersistFile and their methods. The third parameter is a variable 
of type PItemIdList. 

After calling SHGetSpecialFolderLocation, you will call 
SHGetPathFromIdList to extract the actual path from the PItemIdList 
parameter. The SpecialFolderLocation property of TWinShortcut is of 
type Word and corresponds to the second parameter, the folder number, 
of SHGetSpecialFolderLocation. This lets you specify the location of the 
shortcut by setting the value of the SpecialFolderLocation property, or by 
providing a path in the ShortcutPath property.

TWinShortcut has a public OpenShortcut method that’s used to open 
an existing shortcut. This method is only three statements long. The 
first statement is a call to the protected method GetFullShortcutPath. 
GetFullShortcutPath returns the full path and filename of the short-
cut. The second statement, shown here, actually opens the file by 
calling the IPersistFile interface’s Load method:

OleCheck(FPersistFile.Load(PWideChar(WideString(FullPath)),
  STGM_READWRITE));

Load ’s two parameters are the name of the file and the mode. 
Because this function is Unicode-compatible, the path must be 
a null-terminated string of wide chars. Because the call to Get-
22 October 2000 Delphi Informant Magazine
FullShortcutPath returns a Pascal ANSI string, the path variable 
FullPath is first cast to type WideString, and then cast to type 
PWideChar to match the type of the parameter. Note that Load 
is called as a parameter to the OleCheck procedure. OleCheck 
examines the value returned by SHGetSpecialFolderLocation, and 
if that value indicates an error, OleCheck raises an EOleSysError 
exception. This technique is used for all of the interface method 
calls in this example, so normal Delphi exception handling can 
be used to trap errors that occur when using this component. 
The last line of the LoadShortcut method calls the custom method 
GetPropertiesFromShortcut, which calls each of the get methods of 
the IShellLink interface and assigns the returned value to the cor-
responding property of TWinShortcut.

Before continuing, let’s look at the GetFullShortcutPath and 
GetPropertiesFromShortcut methods used by OpenShortcut. If 
the ShortcutPath property is null, GetFullShortcutPath calls 
GetSpecialFolderPath. Otherwise, it assigns the value of the 
ShortcutPath property to Result. It then adds the ShortcutFileName 
property to the end of the string. This is safe because 
GetSpecialFolderPath always returns a path that ends with a backs-
lash, and the write method for the ShortcutPath property ensures 
that the property value always ends with a backslash. The write 
method for the ShortcutFileName property ensures that the file-
name always includes the .lnk extension.

GetSpecialFolderPath calls SHGetSpecialFolderLocation and passes the 
value of the SpecialFolderLocation property as the second parameter. 
This call loads the ItemIdList variable passed as the third parameter. 
Next, GetSpecialFolderPath calls SHGetPathFromIdList, passing two 
parameters. The first is the ItemIdList variable initialized by the call to 
SHGetSpecialFolderLocation, and the second is a char array, CharStr, 
into which the path will be placed. Finally, CharStr is assigned to the 
Result variable and a backslash is appended to the path.

The final step in the OpenShortcut method is the call to 
GetPropertiesFromShortcut. This method calls each of the get methods 
in the IShellLink interface and assigns the returned value to the 
corresponding property of TWinShortcut. For example, the first call 
is to the IShellLink GetPath method, which returns the path to the 
target file, i.e. the file to which the shortcut points. These calls are 
straightforward with two exceptions. If you create a shortcut manu-
ally in Windows, and the shortcut is to a program that requires 
command-line arguments, you type them in the Target edit box 
following the path to the EXE file. However, the command-line 
arguments are stored separately in the shortcut file and are retrieved 
with a separate call, GetArguments.

The call to GetHotkey returns the hotkey information in a single 
parameter of type Word. The virtual key code is stored in the low 
byte, and the modifier flags that indicate which shift keys were 
pressed are stored in the high-order byte. If you want to display the 
hotkey as text, or give users the ability to enter a hotkey, the easy 
way is to use the THotkey component from the Win32 page of the 
Component palette. The problem is that the THotkey component 
stores the virtual key code in its HotKey property, and the modifier 
flags in its Modifiers property. To make things worse, the values used 
to represent the C, A, S, and extended keys in the high 
byte of the value returned by GetHotkey aren’t the same as the values 
used to represent the same keys in the Modifiers property of THotkey. 

(Note: The extended-key flag indicates whether the keystroke 
message originated from one of the additional keys on the enhanced 



 

On Language
keyboard. The extended keys consist of the A and C keys on the 
right-hand side of the keyboard; the Z, X, h, e, u, 
d, and the arrow keys to the left of the numeric keypad; the 
n key; the k key; the p key; and the divide (/) and 
J keys in the numeric keypad. The extended-key flag is set if the 
key is an extended key.)

To make life easier for anyone using TWinShortcut, it has two 
properties, Hotkey and HotkeyModifiers, that are assignment-
compatible with the properties of THotkey. The code following the 
call to GetHotkey converts the modifier flags from the form used 
by GetHotkey to the form used by the HotkeyModifiers property 
and by the THotkey component. The modifier constants used with 
GetHotkey and SetHotkey (HOTKEYF_ALT, HOTKEYF_CONTROL, 
HOTKEYF_SHIFT and HOTKEYF_EXT) are declared in the 
CommCtrl.pas unit. The constants used with the THotkey component’s 
Modifiers property (hkAlt, hkCtrl, hkShift, and hkExt) are declared in the 
ComCtrls.pas unit.

Creating or saving a modified shortcut is handled by the 
TWinShortcut’s public SaveShortcut method. SaveShortcut begins 
by calling PutPropertiesToShortcut. This method calls the 
IShellLink put method for each property to assign the current 
value of the TWinShortcut properties to the corresponding short-
cut properties. The only part of this process that is complex is 
converting the HotkeyModifiers property to the form required by 
the SetHotkey method. The series of if statements set the appropri-
ate bits in the byte variable HotKeyMods. SetHotkey is called with 
a single-word parameter that’s constructed by shifting HotKeyMods
left eight bits to place it in the high-order byte of the word 
and adding the value of the HotKey property. Next, a call to 
GetFullShortcutPath returns the path to the link file. Finally, the 
IPersistFile Save method is called with the full path to the link file 
as a parameter. Again, the path must be cast first to a WideString, 
and then to a PWideChar.

Conclusion
You can create and modify any Windows shortcut using the methods 
of the IShellLink and IPersistFile interfaces implemented by the 
ShellLink object. Although this article doesn’t cover every method 
in detail, it should give you everything you need for most shortcut 
operations. For more detailed information about the interfaces or any 
of their methods, consult the Win32 Programmers Reference online 
Help file that’s installed with Delphi 5. ∆

The files referenced in this article are available on the Delphi Informant 
Magazine Complete Works CD in INFORM\00\OCT\DI200010BT.

Bill Todd is president of The Database Group, Inc., a database consulting and 
development firm based near Phoenix. He is a Contributing Editor to Delphi 
Informant Magazine, co-author of four database programming books, author of 
over 60 articles, and a member of Team Borland, providing technical support on 
the Borland Internet newsgroups. He is a frequent speaker at Borland Developer 
Conferences in the US and Europe. Bill is also a nationally known trainer and has 
taught Paradox and Delphi programming classes across the country and overseas. 
He was an instructor on the 1995, 1996, and 1997 Borland/Softbite Delphi World 
Tours. He can be reached at bill@dbginc.com.
23 October 2000 Delphi Informant Magazine
Begin Listing One — TWinShortcut
unit WinShortcut;

interface

uses
  Windows, Messages, SysUtils, Classes, Graphics, Controls,
  Forms, Dialogs, ComObj, ShlObj, ShellAPI, ActiveX, Menus,
  ComCtrls;

type
  TWinShortcut = class(TComponent)
  private
    { Private declarations. }
    FArguments:           string;
    FDescription:         string;
    FHotkey:              Word;
    FHotKeyModif iers:     THKModif iers;
    FIconFile:            string;
    FIconIndex:           Integer;
    FShortcutFileName:    string;
    FShortcutPath:        string;
    FRunWindow:           Integer;
    FSpecialFolder:       Integer;
    FTarget:              string;
    FWorkingDirectory:    string;
  protected
    { Protected declarations. }
    FPersistFile: IPersistFile;
    FShellLink: IShellLink;
    function GetFullShortcutPath: string;
    procedure GetPropertiesFromShortcut;
    function GetSpecialFolderPath: string;
    procedure PutPropertiesToShortcut;
    procedure SetShortcutFileName(Value: string);
    procedure SetShortcutPath(Value: string);
    procedure SetSpecialFolder(Value: Integer);
  public
    { Public declarations. }
    constructor Create(AOwner: TComponent); override;
    destructor Destroy; override;
    procedure OpenShortcut;
    procedure SaveShortcut;
  published
    { Published declarations. }
    property Arguments: string 
      read FArguments write FArguments;
    property Description: string 
      read FDescription write FDescription;
    property HotKey: Word read FHotkey write FHotkey;
    property HotKeyModif iers: THKModifiers
      read FHotKeyModif iers write FHotKeyModif iers;
    property IconFile: string 
      read FIconFile write FIconFile;
    property IconIndex: Integer
      read FIconIndex write FIconIndex;
    property RunWindow: Integer 
      read FRunWindow write FRunWindow;
    property Target: string read FTarget write FTarget;
    property ShortcutFileName: string 
      read FShortcutFileName write SetShortcutFileName;
    property ShortcutPath: string 
      read FShortcutPath write SetShortcutPath;
    property SpecialFolder: Integer 
      read FSpecialFolder write SetSpecialFolder;
    property WorkingDirectory: string 
      read FWorkingDirectory write FWorkingDirectory;
  end;

procedure Register;

implementation

uses CommCtrl;



On Language
const
  Backslash = '\';
  LinkExtension = '.LNK';

{ ********* Constructor and Destructor ********** }

constructor TWinShortcut.Create(AOwner: TComponent);
begin
  { Create the ShellLink object and get an IShellLink and
    an IPersistFile reference to it. }
  inherited;
  FShellLink := 
    CreateComObject(CLSID_ShellLink) as IShellLink;
  FPersistFile := FShellLink as IPersistFile;
end;

destructor TWinShortcut.Destroy;
begin
  { Free the ShellLink object. }
  FShellLink := nil;
  FPersistFile := nil;
  inherited;
end;

{ ********* Property Getter and Setter Methods ********** }

procedure TWinShortcut.SetShortcutFileName(Value: string);
begin
  FShortcutFileName := Value;
  { If the f ile name does not end with the .LNK extension,
    add the extension. }
  if CompareText(ExtractFileExt(FShortcutFileName),
                 LinkExtension) <> 0 then
    FShortcutFileName := FShortcutFileName + LinkExtension;
end;

procedure TWinShortcut.SetShortcutPath(Value: string);
begin
  FShortcutPath := Value;
  { Make sure the path ends with a backslash. }
  if Copy(FShortcutPath,
     Length(FShortcutPath), 1) <> Backslash then
    FShortcutPath := FShortcutPath + Backslash;
end;

procedure TWinShortcut.SetSpecialFolder(Value: Integer);
begin
  FSpecialFolder := Value;
  { Clear the ShortcutPath when a value is assigned to the
    SpecialFolder property. The SpecialFolder property will
    not be used to get the path to the link f ile if the
    ShortcutPath property is not null. }
  FShortcutPath := '';
end;

{ ********* Custom Methods ********** }

function TWinShortcut.GetFullShortcutPath: string;
{ Gets the path to the shortcut f ile. If the ShortcutPath
  property is null, the path comes from the SpecialFolder
  property. }
begin
  if FShortcutPath = '' then
    Result := GetSpecialFolderPath
  else
    Result := FShortcutPath;
  Result := Result + FShortcutFileName;
end;

procedure TWinShortcut.GetPropertiesFromShortcut;
{ Calls the appropriate IShellLink method to get the value
  of each property of the link and assign that value to the
  corresponding property of this component. }
var
  CharStr:       array[0..MAX_PATH] of Char;
24 October 2000 Delphi Informant Magazine
  WinFindData:   TWin32FindData;
  RunWin:        Integer;
  HotKeyWord:    Word;
  HotKeyMod:     Byte;
begin
  OleCheck(FShellLink.GetPath(CharStr, MAX_PATH,
           WinFindData, SLGP_UNCPRIORITY));
  Target := CharStr;
  OleCheck(FShellLink.GetArguments(CharStr, MAX_PATH));
  Arguments := CharStr;
  OleCheck(FShellLink.GetDescription(CharStr, MAX_PATH));
  Description := CharStr;
  OleCheck(
    FShellLink.GetWorkingDirectory(CharStr, MAX_PATH));
  WorkingDirectory := CharStr;
  OleCheck(FShellLink.GetIconLocation(CharStr, MAX_PATH, 
                                      FIconIndex));
  IconFile := CharStr;
  OleCheck(FShellLink.GetShowCmd(RunWin));
  RunWindow := RunWin;
  OleCheck(FShellLink.GetHotkey(HotKeyWord));
  { Extract the HotKey and Modif ier properties. }
  HotKey := HotKeyWord;
  HotKeyMod := Hi(HotKeyWord);
  if (HotKeyMod and HOTKEYF_ALT) = HOTKEYF_ALT then
    Include(FHotKeyModif iers, hkAlt);
  if (HotKeyMod and HOTKEYF_CONTROL) = HOTKEYF_CONTROL then
    Include(FHotKeyModif iers, hkCtrl);
  if (HotKeyMod and HOTKEYF_SHIFT) = HOTKEYF_SHIFT then
    Include(FHotKeyModif iers, hkShift);
  if (HotKeyMod and HOTKEYF_EXT) = HOTKEYF_EXT then
    Include(FHotKeyModif iers, hkExt);
end;

function TWinShortcut.GetSpecialFolderPath: string;
{ Returns the full path to the special folder specif ied in
  the SpecialFolder property. A backslash is appended to
  the path. }
var
  ItemIdList: PItemIdList;
  CharStr:    array[0..MAX_PATH] of Char;
begin
  OleCheck(ShGetSpecialFolderLocation(0, FSpecialFolder,
                                      ItemIdList));
  if ShGetPathFromIdList(ItemIdList, CharStr) then begin
    Result := CharStr;
    Result := Result + Backslash;
  end; // if
end;

procedure TWinShortcut.OpenShortcut;
{ Opens the shortcut and loads its properties into the
  component properties. }
var
  FullPath: string;
begin
  FullPath := GetFullShortcutPath;
  OleCheck(FPersistFile.Load(PWideChar(WideString(
    FullPath)), STGM_READWRITE));
  GetPropertiesFromShortcut;
end;

procedure TWinShortcut.PutPropertiesToShortcut;
{ Calls the appropriate IShellLink method to assign the
  value of each of the components properties to the
  corresponding property of the shortcut. }
var
  HotKeyMods: Byte;
begin
  HotKeyMods := 0;
  OleCheck(FShellLink.SetPath(PChar(FTarget)));
  OleCheck(FShellLink.SetIconLocation(PChar(FIconFile),
                                      FIconIndex));
  OleCheck(FShellLink.SetDescription(PChar(FDescription)));
  OleCheck(FShellLink.SetWorkingDirectory(PChar(
    FWorkingDirectory)));



2

OP Tech
  OleCheck(FShellLink.SetArguments(PChar(FArguments)));
  OleCheck(FShellLink.SetShowCmd(FRunWindow));
  if hkShift in FHotKeyModif iers then
    HotKeyMods := HotKeyMods or HOTKEYF_SHIFT;
  if hkAlt in FHotKeyModif iers then
    HotKeyMods := HotKeyMods or HOTKEYF_ALT;
  if hkCtrl in FHotKeyModif iers then
    HotKeyMods := HotKeyMods or HOTKEYF_CONTROL;
  if hkExt in FHotKeyModif iers then
    HotKeyMods := HotKeyMods or HOTKEYF_EXT;
  OleCheck(
    FShellLink.SetHotkey((HotKeyMods shl 8) + HotKey));
end;

procedure TWinShortcut.SaveShortcut;
{ Copies the component properties to the shortcut
  and saves it. }
var
  FullPath: string;
begin
  PutPropertiesToShortcut;
  FullPath := GetFullShortcutPath;
  OleCheck(FPersistFile.Save(PWideChar(
    WideString(FullPath)), True));
end;

procedure Register;
begin
  RegisterComponents('DI', [TWinShortcut]);
end;

end.

End Listing One
5 October 2000 Delphi Informant Magazine



26 October 2000 Delphi Informant Magazine

Tables

Catalog

Groups

Users

Procedures

Views

Table

Group

User

Procedure

View

Users

Groups

Command

Command

User

Group

Table

Indexes

Keys

Properties

Properties

Columns

Properties

Key Column

Property

Property

Property

Index Columns Column

Columns Columns

Columns & Rows
ADOX / JRO / Delphi 5

By Alex Fedorov and Natalia Elmanova

A Practical Guide to 
ADO Extensions
Part I: Using ADOX and JRO

Delphi is well known for its ability to access various databases. Until recently, however, 
this access has required the Borland Database Engine (BDE). As you probably know, 

Delphi 5 features an alternative technology called ADO Express. This set of components 
provides the object-oriented, high-level interface to Microsoft ActiveX Data Objects 
(ADO), which is a part of the Microsoft Universal Data Access architecture. 

Although ADO and ADO Express have already 
been covered in Delphi Informant Magazine, several 
extensions to this data access technology deserve 
separate attention. This month, in Part I, we’ll 
look at ADO Extensions for DDL and Security 
(ADOX), and the Jet and Replication Objects 
library (JRO). Next month, we’ll explore ADO 
Multi-dimensional (ADO MD). [Visit http://
msdn.microsoft.com/library/officedev/odeopg/
deovradocomponentlibraries.htm for a full descrip-
tion of the ADO component libraries.]

Introduction to ADOX
ADOX can be used to perform various tasks not 
available using ADO alone. For example, you 
can extract information about users and/or create 
new user accounts. ADOX extends the ADO 
object model with 10 objects that can be used 
separately or in conjunction with ADO. You can 
use the ADO Connection object, for instance, to 
connect to a data source and extract metadata.

Metadata describes the database itself (e.g. tables, 
columns, indexes, keys, stored procedures, etc.), 
rather than the data it contains. SQL is used to 

define the metadata in most modern databases. 
Before ADOX, the only way to extract metadata 
from data sources using ADO was to use the 
OpenSchema method of the ADO Connection 
object. To create new database objects, you used 
the Data Definition Language (DDL) component 
of SQL and the ADO Command object. In other 
words, you were passing in SQL statements, which 
— obviously — necessitated a knowledge of SQL.  

ADOX provides a way to manipulate metadata 
that doesn’t require an understanding of SQL.  
Note that ADOX doesn’t work with all databases in 
the world; its functionality is limited to Microsoft 
Access, Microsoft SQL Server, and a few databases 
from other vendors. For more information, visit 
http://www.microsoft.com/data.

The ADOX object model is shown in Figure 1, and 
many of its objects are briefly described in Figure 
2. The top-level object in the ADOX object model 
is Catalog. It contains the Tables, Views, Procedures, 
Users, and Groups collections. The Catalog object can 
be used to open an existing database (through the 
ADO Connection object), or to create a new one. In 

Figure 1: The ADOX object model.

http://msdn.microsoft.com/library/officedev/odeopg/deovradocomponentlibraries.htm
http://msdn.microsoft.com/library/officedev/odeopg/deovradocomponentlibraries.htm
http://msdn.microsoft.com/library/officedev/odeopg/deovradocomponentlibraries.htm
http://www.microsoft.com/data


27 October 2000 Delphi Informant Magazine

the current version of ADO, we can only create new Jet 4.0 databases, 
but in future versions, this ability will be extended to other databases.

Once we have the Catalog object, we can work with Tables, Procedures, 
and Views. For example, by iterating the Tables collection, we can find 
what tables are in the database. Going deeper, we can check a Table 
object’s Columns, Indexes, and Keys collections. By checking the prop-
erties of a database, we can get information about its metadata, and, 
for example, store it in a separate file or transfer it somewhere. Using 
the Users and Groups collections, we can obtain security information 
to find group accounts and users of a secured database. Note that this 
requires a secured database. In the case of Access, we must include the 
System.mdw database in the connection string to the data source.

The other, more exciting, thing about ADOX is that we can use 
it to create databases and objects from scratch. For example, we 
can create a Jet (Access) database, add tables, columns, indexes, and 

keys, and then programmatically or manually fill this newly created 
database with the information. This can be a great help in situations 
where we have raw data that needs to be organized in some way. In 
a general case, to create a new database, we use the Catalog object, 
and then use the Add method of the Tables, Columns, Keys, and 
Indexes collections to add the database objects to it.

Now that we’ve discussed the ADOX objects, let’s use them to create 
a simple ADOX viewer. 

Creating a Simple ADOX Viewer
Let’s look at how to use ADOX objects in Delphi. We’ll create an 
application that can:
§ Show the database metadata in a tree view.
§ Show properties of database objects.
§ Show the source code of views and stored procedures.

To perform this task, we’ll create a new project and place the following 
components onto the main form: MainMenu, TreeView, Memo, and 
StatusBar. The completed demonstration application is shown in 
Figure 3. (It’s also available for download; see end of article for details.)

Next, we must include a reference to the ADOX type library, i.e. the 
Msadox.dll file. To do this, select Project | Import Type Library from 
the main menu of the Delphi IDE, then select Microsoft ADO Ext. 

2.1 for DDL and Security from the list of available type libraries. To 
avoid conflicts with previously declared classes, rename the ADOX 
classes (e.g. TTable to TTablexxx), uncheck the Generate Component 

Wrapper checkbox (we only need the .pas file), and press the Create 

Unit button. This will create an ADOX_TLB.pas file — the interface 
unit to the ADOX type library. We’ll need to refer to it in the 
uses clause of our main project unit. We’ll also need to include the 
ADODB unit in the uses clause. Now we’re ready to write code that 
uses ADOX objects. We’ll create the File | Open Catalog menu item, 
and modify its OnClick event handler to appear as shown here:

procedure TForm1.OpenCatalog1Click(Sender: TObject);
begin
  // Get DataSourceName through standard MS dialog box.
  DS := PromptDataSource(Application.Handle, '');
  // If user selected one...
  if DS <> '' then
    BrowseData(DS);
end;

Here we use the 
PromptDataSource 
method, imple-
mented in the 
ADODB unit, 
to display the 
standard Data 
Link Properties 
dialog box (see 
Figure 4). If you 
have the Microsoft 
Access sample 
databases installed, 
you may want to 
test with the 
Northwind.mdb 
database using the 
Microsoft Jet OLE 
DB provider.

Object Description

Catalog Represents the schema of the database, and 
 provides access to collections of all the tables, 
 procedures, users, and groups in a database.
Column Represents a column in a table, or the columns 
 involved in an index or key.
Connection Used to provide a connection to a data source.
Group Represents a group account that has access to a 
 secured database.
Index Represents an index on a table. Contains a 
 collection of the Column objects upon which the 
 index is based. 
Key Represents a key on a table. Contains a collection 
 of the Column objects upon which the key is based.
Procedure Represents a stored procedure or query. 
Table Represents a table in the database and provides 
 access to columns, indexes, and keys. 
User Represents a user of a secured database.
View Represents a view (a virtual table).

Figure 2: Selected ADOX objects.

Figure 3: The demonstration application for this article loads the 
metadata of a selected database into a TreeView component. 

Figure 4: The Data Link Properties dialog box.

Columns & Rows



28 October 2000 Delphi Informant Magazine

Once a data source is selected, the BrowseData procedure is called. 
The purpose of this procedure is to fill the TreeView component with 
metadata extracted from the data source. Figure 5 shows the code 
that does the job.

There are three loops that iterate through the Tables, Views, and 
Procedures collections of the Catalog object. Each object found is 
placed on the appropriate branch of the TreeView component. The 
Tables collection contains one or more Table objects, each of which 
should be processed to find Columns, Indexes, and Keys within it. This 
is done with the ProceedTables procedure, shown in Figure 6.

Again, we have three loops. In this procedure they iterate the 
Columns, Indexes, and Keys collections of the Table object.

Returning to the BrowseData procedure, we find that before the loop 
through the Views collection, we perform the following check:

if CheckViews(Catalog) then ...

This is done to avoid possible errors with data sources for which 
ADOX does not support Views collections. The CheckViews function 
is shown in Figure 7. 

Now we have the TreeView component filled with metadata informa-
tion. To get more information about this particular object, we need to 
implement the OnChange event handler for the TreeView component 
(see Figure 8).

As you can see, this is straightforward code that calls one of six pro-
cedures, depending on which node was clicked on the TreeView com-
ponent. For example, the ViewTables procedure displays the number 
of objects within the table selected, and ViewColumns, ViewIndexes, 
and ViewKeys are used to study the properties of the Column, Index, 
and Key objects (see Figures 9, 10, and 11 respectively).

procedure TForm1.BrowseData(DataSource: string);
var
  RootNode  : TTreeNode;
  OneNode   : TTreeNode;
  SubNode   : TTreeNode;
  I         : Integer;
  OldCursor : TCursor;
begin
  // Change the default cursor to an hourglass.
  OldCursor := Screen.Cursor;
  Screen.Cursor := crHourglass;
  StatusBar1.Panels[0].Text :=
    'Extracting metadata, please wait.';
  // Clear TreeView and Memo.
  ClearTree;
  Memo1.Lines.Clear;
  Application.ProcessMessages;
  // Connect to the data source.
  Catalog._Set_ActiveConnection(DataSource);
  RootNode := TreeView1.Items.Add(nil, 'Catalog');

  // Add Tables.
  OneNode  := TreeView1.Items.AddChild(RootNode, 'Tables');
  for I := 0 to Catalog.Tables.Count-1 do begin
    SubNode := TreeView1.Items.AddChild(
                 OneNode, Catalog.Tables[I].Name);
    // Process Columns, Indexes, and Keys.
    ProceedTables(Catalog.Tables[I], SubNode);
  end;
  // Add Views.
  if CheckViews(Catalog) then begin
    OneNode := TreeView1.Items.AddChild(RootNode, 'Views');
    for I := 0 to Catalog.Views.Count-1 do
      SubNode := TreeView1.Items.AddChild(
                   OneNode, Catalog.Views[I].Name);
  end;
  // Add Procedures.
  OneNode  := TreeView1.Items.AddChild(RootNode,
                                       'Procedures');
  for I := 0 to Catalog.Procedures.Count-1 do
    SubNode := TreeView1.Items.AddChild(
                 OneNode, Catalog.Procedures[I].Name);
  RootNode.Expand(False);

  // Restore the default cursor and clear the status bar.
  Screen.Cursor := OldCursor;
  StatusBar1.Panels[0].Text := '';
end;

Figure 5: Filling the TreeView component with metadata 
extracted from the data source.

Columns & Rows

procedure TForm1.ProceedTables(T: Table; N: TTreeNode);
var
  I       : Integer;
  SubNode : TTreeNode;
begin
  // Add Columns.
  if T.Columns.Count > 0 then
    SubNode := TreeView1.Items.AddChild(N, 'Columns');
  for I := 0 to T.Columns.Count-1 do
    TreeView1.Items.AddChild(SubNode,
                             T.Columns.Item[I].Name);
  // Add Indexes.
  if T.Indexes.Count > 0 then
    SubNode := TreeView1.Items.AddChild(N, 'Indexes');
  for I := 0 to T.Indexes.Count-1 do
    TreeView1.Items.AddChild(SubNode,
                             T.Indexes.Item[I].Name);
  // Add Keys.
  if T.Keys.Count > 0 then
    SubNode := TreeView1.Items.AddChild(N, 'Keys');
  for I := 0 to T.Keys.Count-1 do
    TreeView1.Items.AddChild(SubNode, T.Keys.Item[I].Name);
end;

Figure 6: Processing a table’s objects.

function CheckViews(C: _Catalog): Boolean;
var
  I : Integer;
begin
  try
    I := C.Views.Count;
    CheckViews := True;
  except
    CheckViews := False;
  end;
end;

Figure 7: The CheckViews function.

procedure TForm1.TreeView1Change(Sender: TObject;
  Node: TTreeNode);
begin
  if Node.Parent.Parent <> nil then
    case Node.Parent.Text[1] of
      'C' : ViewColumns(Node.Parent.Parent.Text,Node.Text);
      'I' : ViewIndexes(Node.Parent.Parent.Text,Node.Text);
      'K' : ViewKeys(Node.Parent.Parent.Text,Node.Text);
      'T' : ViewTables(Node.Text);
      'V' : ViewProps(Node.Text);
      'P' : ProcProps(Node.Text);
    end;
end;

Figure 8: The OnChange event handler for the TreeView 
component.



29 October 2000 Delphi Informant Magazine

The ViewProps and ProcProps procedures display the source code of 
the view or stored procedure. The ProcProps procedure is shown in 
Figure 12. The ViewProps procedure is similar, so it’s not shown here. 

Here we use the fact that the stored procedure stored in the Procedures 
collection actually points to the ADO Command object. Thus, we use 
the Get_Command method to extract the IDispatch interface to the 
Command object, and use its Get_CommandText method to obtain 
the source code of the stored procedure.

Now we know how to use the ADOX object to retrieve metadata 
from various data sources, as well as display the resulting information. 
Another ADOX possibility, which we’ll cover next, is the ability to create 
databases from scratch, without complex SQL DDL statements. 

Creating Databases and Objects
The first step in creating a new database is to create a new instance of 
the Catalog object. This allows us to specify not only the type of the 
database to be created (through the OLE DB Provider), but also the 
location of the database file. Figure 13 shows how this can be done 
for an Access database.

This creates a new database of the specified type, at the specified loca-
tion. After that, we can append tables and columns to the database. 
Here are the steps:
1) Create a new instance of the Table object.
2) Create a new instance of the Column object.
3) Specify the properties of the new column.
4) Add the Column object to the Columns collection of the Table object.

Figure 9: Column object properties.

Property Description

Attributes Contains characteristics of a column.
DefinedSize Contains the maximum size of a column.
NumericScale Contains the scale of a numeric column.
ParentCatalog Indicates the catalog to which this 
 column belongs.
Precision Contains the maximum precision of data in 
 the column.
RelatedColumn Contains the name of the related column for 
 key columns.
SortOrder Indicates the sorting order for a column.
Type Contains the data type for the column values.

Figure 10: Index object properties.

Property Description

Clustered Indicates whether the index is clustered.
IndexNulls Shows how null indexes are processed.
PrimaryKey Indicates whether the index is the primary key.
Unique Indicates whether the keys in the index must 
 be unique.

Property Description

DeleteRule Shows how primary key deletion is processed.
RelatedTable Indicates the name of the foreign table for the 
 foreign key.
Type Contains the type of key.
UpdateRule Shows how the primary key update is processed.

Figure 11: Key object properties.

Columns & Rows

procedure TForm1.ProcProps(Name: string);
var
  S       : string;
  Disp    : IDispatch;
  Command : _Command;
begin
  S := 'PROCEDURE : ' + Catalog.Procedures.Item[Name].Name;
  S := S + ^M^J + 'Created   : ' +
  VarToStr(Catalog.Procedures.Item[Name].DateCreated);
  S := S + ^M^J + 'Modif ied  : ' +
  VarToStr(Catalog.Procedures.Item[Name].DateModified);
  if CmdSupported(Catalog.Procedures.Item[Name]) then begin
    Disp := Catalog.Procedures.Item[Name].Get_Command;
    Command := Disp AS Command;
    S := S + ^M^J^M^J + Command.Get_CommandText;
  end;
  Memo1.Text := S;
end;

Figure 12: The ProcProps procedure displays a stored proce-
dure’s source code.

const
  BaseName = 'c:\data\demo.mdb';
  DS = 'Provider=Microsoft.Jet.OLEDB.4.0;Data Source=' + 
       BaseName;
var
  Catalog : TADOXCatalog;
  ...
  // Create an instance of an ADOX Catalog object.
  Catalog := CoCatalog.Create;
  // If the database exists, delete it.
  if FileExists(BaseName) then
    DeleteFile(BaseName);
  // Create new .mdb f ile.
  Catalog.Create(DS);
  // Specify the active connection.
  Catalog._Set_ActiveConnection(DS);
  ...

Figure 13: Creating an Access database programmatically. 

// STEP 1
// Create a new instance of the Table object.
Table := CoTable.Create;
// Give it a name...
 Table.Name := 'Customers';
// ...and specify the Catalog it belongs to.
 Table.ParentCatalog := Catalog;
// STEP 2
// Create a new instance of the Column object.
Column := CoColumn.Create;
with Column do begin
  ParentCatalog := Catalog;
  // STEP 3
  // Set the properties.
  Name  := 'CustID';
  Type_ := adInteger;
  Properties['Autoincrement'].Value := True;
  Properties['Description'].Value   := 'Customer ID';
end;
// STEP 4
// Append the Column to the table's Columns collection.
Table.Columns.Append(Column, 0, 0);
Column := nil;
// STEP 5
// Ceate more Columns and append them to the Table.
with Table.Columns do begin
  Append('FirstName', adVarWChar, 64);
  Append('LastName', adVarWChar, 64);
  Append('Phone', adVarWChar, 64);
  Append('Notes', adLongVarWChar, 128);
end;
// STEP 6
// Add the Table object to Tables collection of the
// Catalog object.
Catalog.Tables.Append(Table);
Catalog := nil;

Figure 14: Adding tables to a database.



30 October 2000 Delphi Informant Magazine

5) Repeat steps 3 and 4 for each new column.
6) Add the Table object into Tables collection of the Catalog object.

The example in Figure 14 shows how these steps can be 
implemented.

After our table is created and its columns are defined, we can add 
indexes and keys as necessary. The following code shows how to 
create an index on the LastName column:

Index := CoIndex.Create;
with Index do begin
  Name := 'LastNameIndex';
  IndexNulls := adIndexNullsDisallow;
  Columns.Append('LastName', adVarWChar, 64);
  Columns['LastName'].SortOrder := adSortAscending;
end;
Table.Indexes.Append(Index, EmptyParam);

The logic of this code is straightforward. First, we create an instance of 
the Index object. Then we set its Name property, specify how null indexes 
are processed, associate it with the column, and — finally — add it to the 
Indexes collection of the Table. The same logic is used for keys.

So far, we have not 
touched upon the 
User and Group 
objects. In the cur-
rent implementation, 
these objects are tied 
to the Jet Engine 
and Microsoft Jet 
OLE DB Provider, 
and there is no indi-
cation that support 
for other databases 
will be implemented 
in future ADO ver-
sions.

Using Jet and Replication Objects
The second ADO extension we’ll cover this month is Jet and Replica-
tion Objects (JRO). Although the ADOX and ADO MD (which 
we’ll cover next month) are able to work with various data sources, 
the JRO objects were implemented specifically to facilitate operations 
with Jet databases. In other words, contrary to ADOX and ADO 
MD, JRO objects can be used only with Access databases.

Introduction to JRO
Like other ADO extensions, JRO exposes the object model that contains 
objects, methods, and properties that can be used to create, modify, and 
synchronize replicas. The main object in the JRO object model is Replica, 
which can be used to create new replicas, check the properties of existing 
replicas, and synchronize changes with other replicas.

The JRO object model includes the JetEngine object, which exposes 
some features of the Jet engine. In particular, the JetEngine object 
can be used to compact the database, set password and encryption 
on databases, and refresh data from the memory cache. These objects 
form the hierarchy shown in Figure 15.

The topic of Jet replication per se is outside the scope of this article, so 
we’ll just briefly describe the methods used for replication. 

The first step in replication is to create a design master; indicate 
the database that will serve as a source for the replicas, and 
make that database replicable. This involves the Replica object 
and its MakeReplicable method. Then we need to change the replica-
bility status of the database objects; the GetObjectReplicability and 
SetObjectReplicability methods of the Replica object are used for this. 
After that, depending on the task, we can create either the partial or 
full replica of the objects that are replicable in the design master.

Next, we can define some update rules. The Filter object is used for 
this purpose. Finally, we can synchronize data in two replicas. There 
can be direct or indirect synchronization or synchronization over the 
Internet. In the latter case, we need to use the Replication Manager 
that comes with Microsoft Office Developer.

To use the JRO library in your Delphi applications, use the Import 
Type Library dialog box to select the Microsoft Jet and Replication 

Objects 2.1 Library (Version 2.1) and press the Install button. This will 
create the JRO_TLB unit, which must then be included in your code 
to access the objects exposed by the JRO library.

Using the JetEngine Object
The JetEngine object can be used to compact the database and 
refresh data from cache. Figure 16 shows how to compact the 
Northwind.mdb database, then create a new compacted copy 
named Newnorth.mdb.

Without going into the inner depths of the Microsoft Jet Engine, let’s 
outline what really happens when we compact a database:
§ Tables pages are reorganized. After being compacted, they reside 

in adjacent database pages. This gives us greater performance 
since the table is no longer fragmented.

§ Unused space is reclaimed by the deletion of objects and records 
that are marked as deleted.

§ AutoNumber fields are reset so the next value allocated will be in 
the continuous sequence from the highest current value.

§ The table statistics used for query optimization are updated.
§ Since the database statistics were changed, all queries are flagged 

so they will be recompiled the next time the query is executed.

Columns & Rows

JetEngine

Filters

Filter

Filter

...

Filter

Replica

Figure 15: The JRO 
object model.

const
  Provider = 'Provider=Microsoft.Jet.OLEDB.4.0;';
  // Replace these paths with the location of the 
  // Microsoft Access sample databases.
  SrcMDB   = 'c:\data\northwind.mdb';
  DstMDB   = 'd:\data\newnorth.mdb';

procedure TForm1.Button1Click(Sender: TObject);
var
  JetEng : JetEngine;
  Src    : WideString;
  Dest   : WideString;
begin
  // Create an instance of the JetEngine object.
  JetEng := CoJetEngine.Create;
  // Specify the source.
  Src    := Provider + 'Data Source=' + SrcMDB;
  // And destination.
  Dest   := Provider + 'Data Source=' + DstMDB;

  // Check if the destination f ile exists and delete it.
  if FileExists(DstMDB) then
    DeleteFile(DstMDB);
  // Compact the database.
  JetEng.CompactDatabase(Src, Dest);
  // Free the JetEngine object instance.
  JetEng := nil;
end;

Figure 16: Creating a new, compacted copy of the database.



31 October 2000 Delphi Informant Magazine

Conclusion
This article introduces two ADO extensions: ADO Extensions for 
DDL and Security (ADOX), and Jet and Replication Objects (JRO). 
We’ve seen how to use ADOX objects to retrieve metadata from data 
sources, and how these objects can be used to create databases from 
scratch. We’ve also seen how the JRO can be used to compact Jet 
databases, and have briefly outlined the replication process.

Next month, we’ll discuss ADO Multi-dimensional (ADO MD), which 
is used for access to multi-dimensional data sources. See you then. ∆

The files referenced in this article are available on the Delphi Informant 
Magazine Complete Works CD  in INFORM\00\OCT\DI200010AF.

Alex Fedorov is an Executive Editor for ComputerPress magazine, published in 
Moscow. He was one of the co-authors of Professional Active Server Pages 2.0 
[Wrox Press, 1998] and ASP 2.0 Programmer’s Reference [Wrox Press, 1999]. 
Natalia Elmanova, Ph.D., is an Associate Professor of the Sechenov’s Moscow 
Medical Academy, and a freelance Delphi/C++Builder programmer, trainer, and 
consultant. She was a speaker at the 10th Annual Inprise/Borland Conference. 
Natalia and Alex are authors of Advanced Delphi Developer’s Guide to ADO 
[Wordware Publishing, 2000], and several programming books written in Russian. 
You can visit their Web site at http://d5ado.homepage.com.

Columns & Rows

http://d5ado.homepage.com


32 October 2000 Delphi Informant Magazi

New & Used

By Robert Leahey

Figure 1: TIB_Ledger an
IBObjects 3.4
Harness the Power of InterBase

In Delphi Informant Magazine’s most recent Readers Choice Awards (see the April 2000  
tissue), Jason Wharton’s InterBase Objects (IBObjects) collected the award for Best 

Database Connectivity. So I decided to have a peek at IBObjects and find out why. I examined 
IBObjects version 3.4b for this review, and found it to be an impressive set of components 
designed to allow developers to harness the power of InterBase in their applications.
n

d

IBObjects has two data access paradigms: 
TDataSet, a connectivity solution based on descen-
dants of Delphi’s TDataSet, and Native, a custom 
connectivity solution for client/server applications.

The TDataSet paradigm provides a set of data 
access controls designed to make converting 
applications to IBObjects as painless as possible. 
TIBODatabase, TIBOTable, and TIBOQuery are 
designed to simply replace their corresponding 
controls (TDatabase, TTable, and TQuery). 
Because virtually all of the BDE functionality is 
supported, complete replacement can be achieved 
with minimal fuss.

The Native paradigm provides a set of components 
designed as a client/server solution that avoids the 
problems of TDataSet’s desktop-centric nature.

In addition to these two data access paradigms, 
IBObjects provides a suite of components 
intended to automate many of the tasks associated 
with writing database applications. There are over 
e

 Setup dialog box.
two dozen data-aware controls, some of which 
provide familiar functionality, such as IB_Edit and 
IB_DateTimePicker, and some of which are highly 
specialized, such as IB_Ledger and IB_IncSearch. 
The latter provides for incremental searches in the 
descendants of TIB_BDataSet, while the former 
is a robust control with a powerful property 
editor for creating data-aware ledgers. I can’t tell 
you how much I wish I’d had that for my last 
accounting application.

Figure 1 displays the TIB_Ledger control and its 
Cells property editor. Notice the amount of control 
and level of detail afforded by this dialog box. Not 
only is each cell assigned its own field and format-
ting, but the user can define multiple rows with 
differing cell layouts.

IBObjects features eight custom toolbars, aimed, 
again, at automating some standard functionality. 
There’s a connection bar, a transaction bar, and 
a search bar. Each of these provide functionality 
in place by simply dropping them on a form and 
hooking them up to the appropriate datasource. 
No more writing the same old, mind-numbing 
search code for that button’s event handler. Above 
the ledger control, in Figure 1, you’ll see four of the 
custom toolbars.

In addition, there are nine dialog components that 
provide pre-built dialog boxes, such as lookups, 
exporting, browsing, and SQL monitoring.

Suffice it to say, IBObjects provides an impressive 
feature set: two-sided data connectivity, integrated 
data controls, toolbars, and dialog boxes. It’s 
beyond the scope of this review to cover all of the 
functionality available, so let’s take a closer look at 
two things: ease of transition and the test bench.



New & Used
Making the Change
Obviously, one test for IBObjects is how easily a developer can 
convert an existing BDE application to use the IBObjects con-
nectivity components. I decided to try converting one of our end-
user sample applications that uses InterBase data. This project uses 
standard BDE controls (TTable, TDatabase, etc.) to access data for 
reporting, and to store user-created reports. The test was to replace 
all existing BDE components with IBObjects components, and to see 
what — if anything — would break.

I didn’t relish the thought of replacing the controls and resetting 
properties by hand, so I opened the main form as text and simply 
replaced all instances of TDatabase with TIBODatabase, all TTables 
with TIBOTables, and all TQuerys with TIBOQuerys. When I viewed 
the form, to my great surprise, only two messages about missing 
properties popped up.

“That’s promising,” I thought, vowing not to get excited yet.

I did have to redirect my TIBODatabase at the proper data, but, 
buoyed by my early success, I decided to be daring and simply run 
the application, thinking my afternoon would be dedicated to tweak-
ing settings and chasing bugs. Hey! The application was running!

I put it through its paces, creating reports, printing, saving, etc. No 
problems at all. I had converted our BDE + InterBase reporting 
application to an IBObjects + InterBase reporting application in five 
minutes and one property change.

Depending on the complexity of your application, you may need to 
do some preparation before trying to convert it using this technique. 
Jason’s BDE-to-IBObjects Conversion Guide supplies an ever-shrinking 
list of properties and methods of the BDE controls that are currently 
unsupported by IBObjects. Browsing this list will help you decide how 
best to proceed when converting your application.
33 October 2000 Delphi Informant Magazine

Connection  Average Completion Time

BDE 59.826 seconds
IBObjects 40.863 seconds

Figure 2: Results from the first test.

Connection  Average Completion Time

BDE 1 minute 53.036 seconds
IBObjects 1 minute 44.328 seconds

Figure 3: Results of the second test.

Figure 4: Automated searches.
The Test Bench
Another factor when considering a switch to IBObjects is, of course, 
speed. There’s not much point in making the switch if the tool doesn’t 
perform, right? Fear not. In my testing, IBObjects demonstrated a 
considerable edge in performance when compared to Delphi’s BDE 
connectivity controls.

In my first test, I created a simple application, which queried and 
joined two InterBase tables, returning a result set of more than 
123,000 records. Using Raize Software’s CodeSite, I sent elapsed-time 
messages at various points in the test. I built two nearly identical 
versions of the application, one using TDatabase and TQuery, the 
other using TIBODatabase and TIBOQuery.

With a dozen test runs, the average times were as shown in Figure 2. 
Notice the significant edge IBObjects holds over the BDE.

For my second test, I again used a reporting scenario. I created an 
application that displayed a report based on that same 123,000+ record 
result set, and set the report component to make two passes. This 
would ensure a complete traversal of the data in one contiguous effort.

This time there was less disparity between the results, but IBObjects 
still gets the nod. For this 2,625-page report, the average results are 
shown in Figure 3.

The superior performance of IBObjects, combined with the ease with 
which I was able to convert my application to use its data access 
controls, makes a strong argument for its use. It’s definitely worth 
your time to download the evaluation version of IBObjects.

Automation
While the advantages of IBObjects are many and varied, one of 
the most noteworthy is the amount of automation that it provides. 
Anyone who has written a client/server database application in 
Delphi can recount how much code they had to write for menial 
tasks, such as lookup dialog boxes, record counts, etc. Using the 
IBObjects controls in concert can automate much of this.

Take searching as an example. In Figure 4 you’ll see two forms. This 
is a client/server application built with IBObjects. The application is cur-
rently in search mode (note that the IBObjects data controls have turned 
blue to indicate that they are accepting search criteria). The second form, 
with the grid, is displaying the result set of the search (records where the 
Last Name begins with “B”). This search dialog box was created with a 
small amount of code and just a few property settings. The IBObjects 
controls are working together to automate the search.

Granted, this is a simple example, but it illustrates the wealth of 
functionality built into these components. IBObjects greatly simpli-
fies the act of writing client/server applications with InterBase by 
automating much of the task.

Other Thoughts
Wharton offers an intriguing license for IBObjects, called the Trust-
ware License. Basically, the thought is that if you don’t think you’ll 
make money using it, you don’t pay for the software. When, however, 
you begin to show a profit, Jason trusts you to pay for your license. 
The details of this generous license are on the IBObjects Web site at 
http://www.ibobjects.com/ibo_trustware.html.

For those who know InterBase, IBObjects is a must-have tool set. If 
you don’t know InterBase, IBObjects is a good reason to learn it.

http://www.ibobjects.com/ibo_trustware.html


New & Used
IBObjects connectivity tools provide a thin wrapper for the Inter-
Base API. This is a very good thing if you already know InterBase; 
everything you’re used to dealing with is available right there in 
Delphi’s Object Inspector, or in IBObjects’ property editors. This 
wealth of properties, however, can be daunting if you’re not that 
familiar with InterBase. IBObjects doesn’t candy-coat anything for 
you; you’ll have to know or learn InterBase well to really understand 
what these components can do for you.

Obviously no software is perfect, and we should run screaming 
from reviews that try to tell us otherwise, but IBObjects’ prob-
lems, at least as I have seen, have been merely a matter of falling 
afoul of my personal preferences.

Maybe I’m spoiled, or perhaps I’ve read a little too much Alan 
Cooper, but I have come to expect software packages to be well-
behaved and to pamper me upon installation. I want to have a 
single executable file that I can run to install the software. 
When it’s done, I want to launch Delphi and find my nicely 
installed new package (complete with Delphi-integrated help) 
waiting for me. This is rarely the case with third-party products, 
and it was not my experience with IBObjects. Installation was 
a chore, requiring me to move files, integrate the help, compile 
packages. Not a big deal, but, as I said, I’m spoiled and want to 
be taken care of.

Likewise, many IBObjects demos weren’t set up to handle non-
standard installation paths. I continually paid for my choice of 
having installed my InterBase sample data to my D drive. How-
ever, in each demo, once I updated the DB path, things went 
well. IBObjects exception messages are also a bit verbose and 
unclear, and the documentation isn’t complete, although it does 
cover much of the product.

Having asked Jason Wharton about these issues, it seems he 
already plans to deal with them. He’s building an installation 
routine that will drastically simplify the installation process. He’s 
also working with a technical writer to produce more thorough 
documentation, and a “Getting Started” guide. Jason is obviously 
responsive, professional, and interested in improving his product. 
This reflects well on the future of IBObjects.

Jason Wharton’s InterBase Objects offers a wide array of data-
aware components with a high degree of interoperability, as well as 
two different sets of data connectivity controls. One set is for build-
ing high-performance client/server applications, and the other mir-
rors Delphi’s TDataSet architecture, allowing developers to simply 
replace existing BDE controls with the IBObjects controls.

Jason Wharton
619 N. Macdonald St.
Mesa, AZ 85201

E-Mail: jwharton@ibobjects.com
Web Site: http://www.ibobjects.com
Price: Full-source license, US$395; full-source upgrade license, 
US$175; partial-source license, US$195; partial-source upgrade 
license, US$75; partial-source to full-source upgrade, US$215.
34 October 2000 Delphi Informant Magazine
Conclusion
InterBase Objects is an outstanding product, and I strongly recom-
mend it for those doing InterBase development. The improved 
performance attained by simply using the IBObjects connectivity 
controls is reason enough to warrant the switch, but when the 
wide range of time and effort saving IBObjects components is also 
considered, the true value of IBObjects becomes quite evident. ∆

Robert is Director of Product Management of ReportBuilder for Digital Metaphors 
Corp. He graduated with a degree in Music Theory from the University of North 
Texas, but has been writing code since his Apple II+ and AppleBasic days. He has 
been programming in Object Pascal since Delphi 1 and currently resides in Texas 
with his wife and daughters.

http://www.ibobjects.com


TextFile
Delphi Graphics and Game Programming Exposed! with DirectX

I was delighted when Delphi Informant components, color depth, and video modes. 

Magazine asked if I would review John 
Ayres’ new book, Delphi Graphics and Game 
Programming Exposed! with DirectX. As the 
title suggests, the book provides a founda-
tion for graphics and game programming 
with DirectX — a subject in which I am 
very interested. 

Quite appropriately, Ayres begins with an 
introduction to game programming as a spe-
cialization (including its ups and downs) and 
a detailed exposition of its essential elements. 
Although these two chapters will be must-
reading for new game programmers, those 
with some experience in this domain may 
want to quickly skim them and delve into 
the remaining chapters, which expose the 
essential techniques. One of the high points 
of Chapter 2 is the case study in which Ayres 
builds a simple Space Invaders-type game to 
demonstrate the game loop and other prin-
ciples discussed in this chapter.

The majority of the remaining chapters 
use DirectX. To make this technology avail-
able, Ayres uses Erik Unger’s Project JEDI 
DirectX header conversion as a foundation, 
and shows how to use the various units 
and utilities that make up that library. 
(Before you run any of the programs on 
the CD-ROM, be sure to include the two 
directories containing the JEDI files on the 
Delphi path.) 

Before introducing the DirectX technologies, 
Ayres provides a basic introduction to graph-
ics programming. He explains how to work 
with graphics elements such as pixels, bit-
maps, and the Canvas object; he also dis-
cusses important concepts such as color 
35 October 2000 Delphi Informant Magazine
He presents techniques for drawing text, 
manipulating palettes, and calling GDI func-
tions. As with most of the other chapters, 
there are many useful demonstration pro-
grams. Many chapters have 10 or more 
example projects.

Chapter 4 provides a fifty-page introduction 
to DirectX. It discusses the various compo-
nents included in this essential game-writing 
technology, with emphasis on DirectDraw. 
The author explains how to use the various 
available functions to perform basic graphics 
operations, such as working with display 
modes, surfaces, and bitmaps. The next two 
chapters build on this foundation, exposing 
techniques for working with palettes and 
sprites. These techniques are presented in 
the context of game production — solving 
game development problems, such as colli-
sion detection in an action game.

DirectX also provides support for user input 
with the DirectInput component. Chapters 
7 and 8 deal with this vital topic, with 
the latter chapter explaining a relatively new 
technique, Force Feedback. As in the pre-
vious chapters, Ayres begins by explaining 
theory and goes on to develop some actual 
examples in Delphi. He includes important 
notes, tips, and warnings — all highlighted 
for easy recognition. He includes important 
technical terms in two locations: where the 
terms appear in the text, and in a glossary at 
the end of the book. I strongly endorse this 
excellent approach.

There are other factors essential to the cre-
ation of a successful game: sound and music, 
special effects, and optimal performance. 
The last several chapters discuss these issues, 
and more. The last chapter, “Putting It All 
Together,” completes the sample application 
begun in Chapter 2. This is a fitting way to 
conclude this well-crafted, informative trea-
tise. I strongly recommend this book for 
anyone who will be programming games in 
Delphi, who wants to add special graphical 
effects to their Delphi applications, or who 
wants to work with DirectX in Delphi.

— Alan C. Moore, Ph.D.

Delphi Graphics and Game Programming 
Exposed! with DirectX by John Ayres, 
Wordware Publishing, Inc., 
2320 Los Rios Blvd., #200 
Plano, TX 75074, 
http://www.wordware.com.

ISBN: 1-55622-637-3
Price: US$59.95 (544 pages, CD-ROM)

http://www.wordware.com


Best Practices
Directions / Commentary
Paint Your Editor

How much time do you spend debugging? Unless you’re perfect, or you’re not a programmer (is there a connection 
there?), you probably spend more time debugging than you care to admit. 
If you’re anything like me, what you like most about programming 
is designing and coding. Analysis must be done (or it’s done by 
somebody else), but it’s something to get out of the way so you can 
get to the interesting and creative work. Simply put, debugging is 
a necessary evil. What can be done to make this process less of a 
drudgery and more productive — so we can get through it and back 
to coding?

Something I find useful is modifying the appearance of the editor. 
By doing this, you acquire visual clues that enable you to see exactly 
what it is you are looking at in the editor. Using colors to differenti-
ate strings from numbers, keywords from identifiers, etc., can be a 
great help in cutting through the haze of information overload we’re 
bombarded with as we try to get to the root of the problem.
36 October 2000 Delphi Informant Magazine

Figure 1: Use colors to modify the appearance of the editor. 
It’s been said that a picture is worth 1,024 words (or so). Figure 
1 illustrates what I mean. As you can see, it’s easy to identify the 
various elements of the code because they’re color-coded (no pun 
intended!). Compare that to how your editor looks in its default 
configuration — black on white! Boring! Blah! Unimaginative! 
Unsophisticated! Unhelpful! I submit also that this is easier on the 
eyes. And we need all the help we can get to avoid carpal retinal 
syndrome, right?

Of course, if you don’t care for my choice of colors, you can select 
your own to suit your fancy and sensibilities. I must admit, I love 
my color scheme and would rather fight than switch, but then 
again, a good portion of the blood flowing through my veins is 
“Port-a-gee,” and we are not exactly known for subtlety in choice 
of color (it’s not politically incorrect when you’re poking fun at 
yourself, I strongly assert!).

So, do you want to take the plunge and spice up your debugging 
experience? It’s easy. Here’s what you need to do:
1) In Delphi 5, select Tools | Editor Options to display the Editor 

Properties dialog box; then select the Color tab as shown in 
Figure 2. For Delphi 4, select Tools | Environment Options instead.

2) Select an item in the Element list box at the left, then click on 
the color you want to set as the foreground color for the selected 
element. “FG” will appear in that color indicating your choice.

3) Right-click on the color you want to set as the background 
color for the selected element (“BG” will appear in that color). 
Unless you’re crazy, you’ll want to stick with one color for the 
background of each element. As probably did not escape your 
notice, I have chosen black. You will doubtless want to choose 
either a very light background, with dark foreground colors, or 
vice versa (as I have).

4) Repeat steps 2-5 for each element you want to set.

If you want to copy my color scheme (especially you Portuguese 
developers out there), check out the table in Figure 3.



Figure 2: The Color page of the Editor Properties dialog box.

Element Foreground Background

Whitespace Blue Black
Comment Yellow (italics) Black
Reserved Word Magenta Black
Identifier Aqua Black
Symbol Yellow Black
String Lime Black
Number Red Black
Search Match White Black

Figure 3: My color scheme.

Best Practices
There are two certainties in life for programmers: debugging and 
taxes. You can ease the pain a little by colorizing that tired old 
Notepad-look-alike. Depending on your perspective and personal 
history, it may bring back memories of Turbo Pascal, or it may 
seem like a leap into the next era of RAD coding. At any rate, 
the improved comprehension afforded by highlighting the various 
elements of your (or somebody else’s) code should augment the 
enjoyment of working with Delphi, and simultaneously reduce the 
amount of time you spend locating and eradicating those pesky 
bugs (“anomalies” to the intelligentsia; “issues” to the euphemism 
inclined/politically correct). Happy debugging! ∆

— Clay Shannon

Clay Shannon is an independent Delphi consultant based in northern Idaho. He is 
available for Delphi consulting work in the greater Spokane/Coeur d’Alene areas, 
remote development (no job too small!), and short-term or part-time assignments 
in other locales. Clay is a certified Delphi 5 developer, and is the author of 
Developer’s Guide to Delphi Troubleshooting [Wordware, 1999]. You can reach him at 
BClayShannon@aol.com.
37 October 2000 Delphi Informant Magazine



File | New
Directions / Commentary
BorCon 2000 a.k.a. The Kylix Konvention

This was my fifth Borland Conference (hardly anyone is saying “Inprise” these days), and like the first one I attended, 
it took me to southern California — this time San Diego. The focus of this conference, as you might guess, was the 

important move to support Linux with versions of Delphi and C++Builder. Code-named Project Kylix, this development 
has engendered more excitement than anything Borland has initiated since its first release of Delphi.
 

All the other features that make Borland conferences so popular 
were present as well. The opening show — I mean keynote — was 
another spectacular multimedia event based on the popular movie, 
The Matrix, with company CEO Dale Fuller, David Intersimone, 
and others making entrances to its powerful theme music. The care-
fully crafted presentation was punctuated with some of the most 
powerful scenes from the movie, scenes that underlined aspects of the 
company’s emerging philosophy.

That philosophy contains some elements that will please many who 
have been critical of it in the past. For one thing, the company has 
returned to its original developer-centered focus. It is also committed 
to achieving success through responsible action. This means that it 
will “not release any product before its time,” very good news for all 
of us who remember early versions of Delphi 4.

The most important new element of this philosophy is “platform 
independence.” This commitment goes beyond just support for 
Windows and the platforms supported by Linux. In fact, Fuller 
made it clear that the company was open to supporting new 
platforms that market demands justified. To punctuate some of 
these new directions, a Macintosh computer was unveiled and 
used briefly during the opening keynote. Delphi for the Mac? 
This may be stretching expectations a bit, but then who knows? 
JBuilder for the Mac is defiantly coming, and was demonstrated in
a technology keynote by Blake Stone, one of JBuilder’s architects. 
The key point to remember is this slogan: “The platform is the 
Net.” Support for more traditional platforms — specific comput-
ers and/or operating systems — will be driven by demand. Good 
business sense, in my view.

As he did at last year’s conference, Fuller took questions from the 
audience. One person asked when Inprise would have a profitable 
quarter. The CEO pointed out that the company was in better 
shape now than at any time in recent memory, that he would not 
38 October 2000 Delphi Informant Magazine
take shortcuts (such as releasing a product prematurely) simply 
to increase profitability, and then shifted the burden back to 
the audience by encouraging everyone to become “Delphi Evange-
lists,” becoming part of the new campaign to convert Visual Basic 
programmers to Delphi.

Ray Lischner asked about what he viewed as a “scattershot 
approach” where the company would release a foundation version 
of one product over here, and open-source another product over 
there. He wondered if there was a coherent strategy in place to 
map Borland’s future development. I’m not certain that Fuller 
answered the question completely, but he did point out that the 
company could not open-source or release foundation versions of 
all its products, since it was, after all, a for-profit company. Still, 
Ray’s questions will hopefully give Borland executives something 
to ponder as they consider important marketing decisions in the 
coming year. For example, if people could download a very basic 
version of Delphi with a few controls and no source, would they 
then be inspired to purchase it?

There are other marketing issues that weren’t discussed in open ses-
sions. As an academic, I very much want to see Delphi become more 
of a player in University Computer Science curricula. If Visual Basic 
can be used to teach beginning classes, why not Delphi? I promised 
some of the Borland people I spoke with that I will do what I can 
to help make this happen.

As in past years, this year’s conference provided a surplus of sessions 
on Delphi and other tools. Again, I attended one of the pre-confer-
ence tutorials, a four-hour session in which Mark Miller presented 
“Design Patterns in Delphi.” Mark did an outstanding job of present-
ing the Singleton, Composite, Factory, Proxy, Observer, Iterator, and 
Flyweight patterns. With each he discussed its applicability to a 
programming challenge, its advantages and disadvantages, and dem-
onstrated its use in an actual Delphi application.



File | New
Mark’s sessions are wild — exciting to many, exasperating to some. 
He loves to take questions from the audience, explore interesting 
tangents that come up, and interject wonderful humor and anec-
dotes. After editing his slides a few times in front of the audience 
and making other spontaneous changes, he shifted attention away 
from possible criticisms about his style by suggesting to the audi-
ence that when they attended a session by his friend Ray Konopka, 
they should evaluate the latter with, “He’s too professional, too 
prepared.” Personally I have no problem with Mark’s approach, 
and go out of my way to attend his sessions.

Delphi 6. Of course, again this year the vast majority of partici-
pants at the conference were Delphi folk. For that reason there 
was a good deal of interest in the newest version of Delphi. I will 
be writing a column on Delphi 6 as soon as it ships, so I’m not 
going to go into great detail now. This year we’ll see a number of 
new and expanded units. The Math unit will be expanded, with 
exciting new developments in the world of variants. There is a 
new StrUtils unit that will feature a plethora of string conversion 
routines. The R&D team has made enhancements to the 
TCollection and TList classes.

One of the most exciting new developments is the support for Web 
development. There will be a test Web server built into Delphi 6, 
and support for working with XML documents. Also, we saw the 
beginnings of a Delphi scripting language that can be used within 
HTML documents. The idea, of course, is to enable us to leverage 
our Delphi skills even more to develop Web applications.

Kylix. Many of the sessions I attended had to do with Kylix, the 
code-name for Delphi for Linux. Turbo Power’s Gary Frerking pro-
vided an excellent introduction to Linux for newbies such as me. 
Charlie Calvert and David Intersimone presented an exciting intro-
duction to Kylix. Let me make a prediction: The introduction of 
Delphi for Linux will be more monumental than the introduction of 
Delphi 1. Further, this implementation of Delphi will be the major 
focus of next year’s conference, with a stampede of Linux developers 
eager to write GUI applications.

What specifications for Kylix did we learn about at the confer-
ence? Of course the Linux version of Delphi will be a component-
based, visual development tool to rapidly produce native Linux 
applications. Its native code generator will use the ELF object 
format, allow two-way visual development (just as in Delphi for 
Windows), and be able to produce the three common types of 
applications: desktop, database, and Web.

Replacing Delphi for Windows’ Visual Component Library (VCL), 
CLX (pronounced clicks) will provide a library of native Linux 
components. CLX comes in four flavors, with only the first one, 
VisualCLX, restricted to Linux. There will also be BaseCLX, pro-
viding basic components and system support; DataCLX, providing 
client data access; and NetCLX, providing support for Internet and 
related programming. To help ensure compatibility and ease of port-
ing, there will be a new file version for Delphi for Linux form files 
(instead of .DFM). In his session entitled “New Language and RTL 
Features in Kylix,” Danny Thorpe outlined additions, deletions, and 
changes to this exciting new flavor of Delphi.

Although much of the standard Delphi tool-set will be there, 
the stand-alone assembler (TASM) and resource compiler won’t be 
included. There will be new conditional defines in both flavors 
of Delphi to support cross-platform development. There will be 
39 October 2000 Delphi Informant Magazine
increased support for wide strings and variants (including custom 
variants). Of course, all Windows-specific units (including low-level 
multimedia support, sad to say) will be gone. Clearly, there will be 
further challenges for Project JEDI in the new Kylix world, and 
several JEDI knights are already working in that arena.

This was probably the most enjoyable conference so far. Personally, 
I had the gratification of having my new Delphi multimedia book 
released simultaneously with the beginning of the conference. I met 
many old and new friends, including a couple of folks involved with 
Project JEDI. Unfortunately, we were not able to schedule a JEDI 
Birds-of-a-Feather session this year. If you think I’m excited about 
Kylix and the future of Delphi, you’re right. I can hardly wait for 
next year’s conference. ∆

— Alan C. Moore, Ph.D.

Alan Moore is a Professor of Music at Kentucky State University, specializing 
in music composition and music theory. He has been developing education-
related applications with the Borland languages for more than 10 years. He 
has published a number of articles in various technical journals. Using Delphi, 
he specializes in writing custom components and implementing multimedia 
capabilities in applications, particularly sound and music. You can reach Alan on 
the Internet at acmdoc@aol.com.


	Table of Contents
	Symposium
	Last Man Standing

	Delphi Tools
	Woll2Woll Announces 1stClass 2000
	SkyLine Tools Announces ImageLib Corporate Suite 5.0 for Delphi 5
	DBI Technologies Announces Solutions::PIM Professional 2.0
	Tabdee Announces TurboSync 1.0
	InstallShield Announces InstallShield for Windows Installer 1.5
	ProWorks Releases Flipper Graph Control 2.0
	Active+Software Announces ServiceMill 3.1.35
	VMware Announces VMware Express for Linux
	combit Announces List &Label 7.0

	Delphi News
	Inprise/Borland Introduces Borland CL X
	Inprise/Borland Announces JBuilder Support for Apple ’s Mac OS X
	Inprise/Borland ’s Kylix to Support Apache Application Development

	On the ’Net
	Internet Messaging Made Easy
	Getting Started with CDO
	Mailstore Logon
	Recipient Listing Example
	Inbox Access Example
	Send Mail Example
	Conclusion
	Bibliography

	Dynamic Delphi
	Automating Word
	Delphi 5 Word Components
	Getting Started
	Establishing a Connection
	Using the Application Object
	Working with Documents
	Working with Text
	Working with Other Objects
	Events
	Object Linking and Embedding
	Saving Documents to Tables
	Reverse Role Playing
	Conclusion
	References

	OP Tech
	Database Persistent Objects
	Delphi Wizards
	User Interface
	Generation
	Installation
	Conclusion

	On Language
	A Quick Way to Shortcuts
	The Interfaces
	Into the TWinShortcut Component
	Conclusion

	Columns &Rows
	A Practical Guide to ADO Extensions
	Introduction to ADOX
	Creating a Simple ADOX Viewer
	Creating Databases and Objects
	Using Jet and Replication Objects
	Introduction to JRO
	Using the JetEngine Object
	Conclusion

	New & Used
	IBObjects 3.4
	Making the Change
	The Test Bench
	Automation
	Other Thoughts
	Conclusion

	TextFile
	Delphi Graphics and Game Programming Exposed!with DirectX

	Best Practices
	Paint Your Editor

	File |New

